" ¢vDataGeneral

.'A

User’s Manual

PROGRAMMER’S
REFERENCE

PERIPHERALS

015-000021-07

NOTICE

Data General Corporation (DGC) has prepared this
manual for use by DGC personnel, licensees, and
customers. The information contained herein is the
property of DGC and shall not be reproduced in whole
or in part without DGC'’s prior written approval.

Users are cautioned that DGC reserves the right to
make changes without notice in the specifications and
materials contained herein and shall not be re-
sponsible for any damages (including consequential)
caused by reliance on the materials presented, includ-
ing, but not limited to typographical, arithmetic, or
listing errors.

NOVA, SUPERNOVA, ECLIPSE and NOVADISC are
registered trademarks of Data General Corporation,
Westboro, Massachusetts.

Ordering No. 015-000021
© Data General Corporation, 1977
All Rights Reserved
Printed in the United States of America
Rev. 07, August 1977

I/O PROGRAMMING

DATA GENERAL
TECHNICAL
MANUAL

TERMINALS

HARD COPY

APE
Programmer’s MAGNETIC TAPES

R eference Manual

PERIPHERALS
DISCS

ANALOG /DIGITAL
DIGITAL/ANALOG

APPENDICES

Tl%is page intentionally left blank

PREFACE

The Programmer's Reference Manual for Peripherals is designed as a companion volume
to the Programmer’'s Reference Manuals for the NOVA line and ECLIPSE Computers. It
furnishes the general principles and the specific details needed to program input/output
(I/O) transfers between standard DGC peripherals and all DGC computers.

This manual consists of several sections. Section I introduces the theory of I/O pro-
gramming on DGC computers and presents several complete examples of 1/0O programs.
The remaining sections of the manual deal with the various families of peripherals sup-
plied by Data General Corporation. Separate chapters in each section provide the spe-
cific information necessary to program the individual peripherals in each family. Section
II covers terminals; Section III covers hard copy devices. Section IV deals with magnetic
tape storage devices, including industry-standard magnetic tape units and the DGC cas-
sette. Section V covers fixed head discs, disc cartridges, and disc packs. Section VI
describes analog-to-digital and digital-to-analog conversion with the Analog Data Con-
version System. The appendices contain a number of reference tables which supply in-
formation about device codes, character codes, and timing figures needed for 1/0
operations.

Before reading this manual, the programmer should have a basic understanding of the
programming of DGC computers, as described in the Programmer's Reference Manual
for the NOVA line Computers (DGC 015-000023) and, where appropriate, in the Program-
mer's Reference Manual for the ECLIPSE Computer (DGC 015-000024). A familiarity
with the operation of the DGC assembler, as described in the Assembler Manual (DGC
093-000017), is also recommended, as the programming examples are written in assem-
bly language.

Additional information, of a more technical nature, may be found in the Interface Manual
(DGC 015-000031), which describes the technical operation of the I/O bus and explains
how to interface a nonstandard peripheral to any of the DGC computers.

As portions of this manual are updated, they are printed according to new typesetting

specifications. This means some sections are presented in a different style than others.
We ask our readers' indulgence for this unavoidable defect.

Rev.04

This page intentionally left blank

ii

TABLE OF CONTENTS

SECTION |
I/O PROGRAMMING
Page
OVERVIEW OF INPUT/OUTPUT -« . etetetetennennnrnnnnnnnnnnnenns e I-1
INTRODUCTION ..ttt ittt iieten s tettrnaronearasosnessnsanoeans . . vees I-1
TYPES OF INFORMA T ION . . ittt ittt ittt eet et tttatetenanneseeenenessnonnnaneees I-1
TYPES OF INFORMATION TRANSFE R . ..t ivtitttititeinessnnsssannenss et ce e I-2
Direct Program Control.ottt ittt it ittt ie et ieeeiennerneneassnsn I-2
Data Channel Controlceiiiiiiiiiinninnnnnnnn. et e ieasi ettt I-2
PROGRAM INT ERRUP T FACILIT Y & it ittt ittt teeeeetanarenseenesensssnesnnennns 1-2
SUMM A R Y ittt ittt ittt ittt eeeearneeeeeneoneeesssoseasoneass ceveerrieen e 1-3
I/OINSTRUCTION SET .ttt ttttttetteeetneeeeeeeneereeeereeeeeeeeeeenss e I-5
INT RODUC T ION . .t ittt itttetttnettenesaeereneenenssoennesesssesessneness eveses. I-D
THE TYPICAL CONTROLLER ..ttt ttetttenntneereeeneeeeenneesessnesesennsnesessess 1-5
Information Registersottt i it et ittt et ittt ennen, I-5
Busy and Done FLagsviineitnttntetoneeneneneneonnenenensnenenonenennneness I-6
Other Status Flags.ottt ittt ittt it i tie e ireeenreansnnennnnns I-6
INSTRUCTION FORM AT . . ittt ittt ettt ennreneerneoeeseesenensenansnness ces e I-7
Device Code Fieldottt ittt ittt ennteeneesneseneonnssnneannnss 1-7
Flag Control Field.ot ittt i ittt et v enennnannnns I-7
Operation Code Field ittt it it ittt eeeenennsnnenans I-8
Accumulator Field.ottt ittt it ettt et eene et iannssenenenanes 1-8
INS T RUC TION S . . ittt ittt ettt te et ienneeneeesssenssensanasnnnns et I-9
NOI/O TRANSFER ..ttt tttttntte e eeaett e e eeaae s eeetee s eaennnnnee, I-9
0 T < > I-9
DA T A IN A it ettt it ittt st teeneeeeenaeeaeesnsneonnnusesesosensssenaans I-9
DAT A OUT A oottt it it ittt eteneneeeeaneneaneenenseseonesseesensnsnnnes I-9
L 1 1\ I-10
DAT A OUT B ittt ettt ieneneesennsssosenaeseeennnessennsaesesoss . veees I-10
0 - N 5 O Ceeenas I-10
DATA OUT € ittt ittt it er e snenenaeeesaanenseenusenenenneessennnnesennens I-10
PROGRAM INTERRU P T FACILIT Y .ttt tttitttennnnesenennanseeenaneeeeennnnesenannanss I-13
INTRODUCTION & .ttt ittt ettt e et e et e et e e eeee e e e e eaee e I-13
OP E R AT ION .ttt it ettt ettt sttt it tenanasanensnasnnensennnanans . I-13
O ¢ 15 o) B - T I-13
Interrupt ReqUES S . ot vttt ittt it ittt ieeneeeeonenensesnenensosacnsnnsss I1-14
Servicing an InterruPtottt ittt it ettt ittt et it erenseenensnsnsnsoneeananss . I-14
IN S T RU C TION S . & ittt it ittt e et aeeenesnanaeneesennensnssnsenoeeeasossensnneneens I-15
INTERRUPT ENABLE ...ttt inttttenreteaensrereneneensnesassonessaeanns 1-15
INTERRUP T DISABLE .. ittt ittt tttet ittt ttnnarenennoreeennnnssanns erteaees I1-15
SKIP IF INTERRUPTS ENABLEDitviititetineernnenensnsnsnnnoas crecenese I-15
SKIP IF INTERRUPTS DISABLED ..t ivtttttirterenneneenneeenosassonsonnsneeanss I1-15
7 G L 50 I-15
INTERRUPT ACKNOWLEDGE ...t .tttenttnttnttennenersenssosessneennesennenanes I-15
023 7} o e I-17

TABLE OF CONTENTS (Continued)

SECTION | (Continued)

Page
PRIORIT Y INT ER R U P TS &ttt ittt ittt iatee it eneeneasenesnseosoeenenesnsenns I-17
Interrupt Priority MasK. ..ottt ittt ittt ittt et e et r e e e ernnenns 1-18
Priority Interrupt Handleroutiinirniinniintnrtnrieneneenenenesaronnas I-18
The Vector Instruction.oiiuiitii i iiiin it iineanrnnenns e I-19
VECTOR ON INTERRUPTING SERVICE CODE ...t tviitittieeerterntenearonnnnens 1-19
DATA CHANNEL FACILITY .ottt ittt tne e nnneeeinseneneesssteneeeennnns veveseses I-23
INTRODUCTION - -+« v v e et e e et e e e e e et eeaee e, e .. 1-23
Fealures ..o ittt in ittt ittt e i e e et et e eaanas .. I-23
CONTROLLER STRUCTURE ..ttt iititttiennneeeenenesenennnoanennsonenns eeveraees I-23
Word Counter .. ov ottt ittt ietnrenreneneenennennnneennnens N Ceereene 1-24
Memory Address Counter ittt ittt it ittt iineerenrenennenoenonsnnnns 1-24
TRANSFER SEQUENCEttt ittt ittt reotearesnernosssnsoanenassenssneneones I1-24
DATA CHANNEL MAP SELECTION.\ttt 1-24
g ol -] o) ol = 1 == oo I-25
PROGRAMMING . ..t ivt it rinnerennenenennns cerenan N N Crresain I-25
IMIN G . .ottt ittt ittt te et teeeaneeeeneeneeenonsoeoeneassesenassosonsanenan ereaeen I-27
INT RODUCTION . ittt ittt ttenessennassososnesssnsnsasesanssssssssssessesnnanssas 1-27
DIRECT PROGRAM CONT RO . ittt ittt iietntestnsaneessusasssssatonsssaasasnnas I-27
DATA CHANNEL CONTROL ...ttt iivntioennuncssosnssssonnencassssnnsens e ve.. I1-28
PROGRAM EXAMPLESt ittt ittt icnnassnnenns feeenas ceeneeas Cheeseeiaaneaas .. I1-31
INT RODUCTION . .t ittt ittt teneseerosossassenssssstosssesosassessssssssannnsssnass I-31
EXAMPLE ONE ...ttt ittt teersestansoesssasssssssssnnssssesnsssnsssacsnoanons 1-32
EX AMPLE TWO . .t ittt i teniteetotsecsssonsestasossosasassossssossssessanasssane . I1-34
EXAMPLE THREE ...ttt iitit it iaenssisaseaastioonssssssasssessannssesenosasssonss 1-37
EXAMPLE FOUR ...ttt ittt iteeasasesttoesssssasensssssassecossosnsesas et ecans 1-47
SECTION I
TERMINALS
INTRODUCTION TO TERMINALS . . .ttt ittt itienteonnreeneeonnseasonsnonenssssessans II-1
T ELE T Y P ES -ttt it ittt teeenestotssaassosasssssssasestsoanesssssanssssossnsanns vee. II-3
INTRODUCTION .« sttt ettt eeenseenenananenanssesenesesenennnseesonss veenene.. II-8
INST RUC TIONS &ttt i ittttereetrasosssessasssssasessssssnsssssssnessnesnssssesassans 11-4
READ CHARACTER BUFFER., ..., Cerees et et reeiesease et asesaasaneneanannans II-4
LOAD CHARACTER BUFFER.......oovviiiinennnnnnns Ceeberaeseser e -4
PROGRAMMING . ..ttt iietetrinessesossosessssaessassssssesssssssssances et I1-5
Terminal e et ee et et ettt et e st e II-5
PaPET TP . vt i e i ter ittt iatcstaototsasessossnsosensossassasssansaasaneonsa I1-5
TIMING .. ittt ittt etsnassnestoseenassossossssnssnnens ettt I1-5
CONSIDE RATIONS & it iiieitteneensnsoasseaosoossonsosssssstsssessosssssasosasssss II-5

Rev.06

TABLE OF CONTENTS (Continued)

SECTION II (Continued)

INT RODUC TION . . ottt ittt ittt et ittt e te s ae e e anneneenesenesnnsnnsnnenns
INSTRUCTIONS . ot ittt ittt tetneeenaneeenneeenneeonnesennaasons cae
READ CHARACTER BUFFER ...t ttitttttitttnieeieeneeennneesnnesennneenns
LOAD CHARACTERBUFFERcvvurerriiinnnnnenneannnnnns Cereeeeereaes vees
CONTROL CHARACTERS ..\ .tiittttititnneeeernninnnaeennnnnns e caer e

DB o R LA 0 5o TP
OUtPUL TImMINg .ottt i i ittt it ettt ettt s e ie e enannens e
CONSIDE RATIONS . ittt ittt inenn et teeneeneneroennsnsneeneanensnas Cereareaas

SECTION 1l
HARD COPY

INTRODUCTION TO HARD COPY PERIPHERALS ...ttt tttiitnunnrernnnennnnenenneenns

PAPERTAPE READER ... itittitttittniionatnasoesonsonesneonaneoneonennnennss oo

INTRODUCTION. . .ttt iiiiiiitis it eneannasnenanronnaanaans N
INSTRUCTIONS ittt iiit it tietssinusansonsasnesnsonsneneensanens Crerireeses

TIMING .\ttt iittit it inisnensnteseensotososasssasnsncasnsnnns fheeerereenn

INTRODUCTION . . . e ettt et tte e et et iee e tee e e e e e eeerrnenennss e
INSTRUCTIONS .. .ttieutneennennnennannaennnennnns e e eereee e,

LOAD FRAME BUFFERtutiiaeinearaennerinernannnennesnnns Ceeenn e
PROGRAMMINGeevvnennnnnns e, e
TIMING .. ttnti ittt et et e e e et e et ettt e e e e e e tee e et e e eaneennes

II-9

II-10
I1-10
1I-10
II-11
II-11
I1-14
I1-14
11-14
1I-14
I1-14
II-14
II-15
m-15
II-15

TABLE OF CONTENTS (Continued)

SECTION Il (Continued)

Page
CARD READERS . . .o ottt et e et et et e e e III-11
INTRODUCTION . .ottt ittt et e ettt e et et e e e e e e e e e e e e e i III-11
INSTRUCTIONS . .ttt e e ettt e e e e e e II1-12
READ COLUMN . .ottt ittt ettt e e e e e e i II1-12
READ ST AT U ottt it e et et et e e e e e e e e III-13
PROGRAMMING . ..ttt ittt et e tte e ettt ettt e e e e e I11-13
TIMING . oot e e et ettt ettt e e e e e e e e e II1-14
ERROR CONDITIONS ..\t tttt ettt ittt e ettt et et e e e e e e et I11-14
PROGRAMMING EXAMPLES ...\ttt et et e e e i 1II-15
LINE PRINTER ..ttt ittt ittt ittt e ettt e e et e e e e e e e i, II-17
INTRODUCTION . ..ttt ettt ettt ettt et e et e e e e e e i III-17
INSTRUCTIONS . .ottt ittt e ettt e e e e e e e e e I1I-19
LOAD CHARACTER BUFFER ...ttt e et III-19
L B . N 1 II1-19
PROGRAMMING . ..ottt ittt et e et e e e e e e e e, I1-20
CONTROL CHARACTERS .ttt itttet ittt ettt et e e e e, I1-21
TIMING . e e et e e e e 11-22
PROGRAMMING EXAMPLE ... ittttittttntn ettt ae et e, II1-23
INCREMENT AL PLOT T ERS & ittt ittt ettt e e e e e e e it II1-25
IN T ROD U C TION . ettt ettt ettt ittt e et ettt et s te e oar e, I11-25
INST RUC TIONS . ottt ittt ittt et ettt et et e et e e e e e e e e e i, 111-26
LOAD COMMAND BUFFER ittt ettt inetee e ene et et e, I11-26
PROGRAMMING . &\ttt ittt et et e tereee ettt aree et an e ae e, I11-27
TIMING . oottt ittt et e ettt ettt ettt e e e e e et e e e e 1I-27
CONSIDE RATION S . . ittt ettt et e et e e e e e e e e e e e i, II1-27
PROGRAMMING EXAMPLE ...ttt ittt tteeet e e ee et ee ittt II1-27

SECTION 1|V
MAGNETIC TAPES

INTRODUCTION TO MAGNETIC TAPES . .ottt ittt et ettt e e et e te e e, Iv-1

INDUSTRY COMPATIBLE MAGNETIC TAPE TRANSPORT .+ttt te ettt eeeeeeeneennnnn, Iv-1

Data FOrmals ..ottt i i i i e e e e e e e Iv-2

Error ChecKing . ..o i it e e e e e e e e IvV-2

DGC CASSETTE TAPE TRANSPORTS .t tttttttt ittt teeee e tsnannnnnenns Iv-3

Data FOormals . oottt i it it i et e e e e e Iv-3

Error Checking .. oo vttt i i e i e e e e ettt Cettraaa IV-3

vi

TABLE OF CONTENTS (Continued)

SECTION IV (Continued)

Page
INDUSTRY COMPATIBLE MAGNETIC SYSTEMS 4ttt vttt tteteeeneeennensenennunis IV-5
INT RODUC TION . . ittt et ittt et ettt ettt et e et e e e ettt s, Iv-17
NS T RUC TION S .ttt ettt ettt et e ettt ettt et tte et e et et et Iv-17
SPECIFY COMMAND AND UNIT ..ot ittti ettt teeterneseneesnennsnnasnnis IV-8
N D A cerens 1v-8
LOAD MEMORY ADDRESS COUNTER .« .ttt ittt it tetesseereneeansnesneennns Iv-9
LOAD WORD COUNTER .. tittittnte it iet ettt e et eee e mee e e e, IV-9
READ MEMORY ADDRESS COUNTER .« .ttt it tttat ittt etttneeetnneeennneennnnns IvV-9
PROGRAMMING . .« ottt ittt i tettete e tette it ese e tneeeeneneenessenennnn, 1v-10
Phase I:Initializingc..ooiiiniiiuiniiiiin ittt eenn s 1v-10
Phase II: Position the Tapeiuittiinr it ittt ittt ee e eeennenn, Iv-11
Phase ITI: Read or Write ovitit ittt it it ittt ettt et ene e e e Iv-12
TIMING .ttt i et ettt ittt ettt teensintensassetnntesenseennenoininiin 1vV-14
ERROR CONDITIONS . ittt ittt teenaeenetenetunenrssensennsoeeseeeneeeneennnns 1v-14
During NIt alizing . ..ottt it it i it ittt it et e it e re e e Iv-14
During Positioningoc.iiiiiiiit ittt et e e e e e IV-14
DUring Readingttt ittt ittt ittt ittt it eestserernneeannnesenenes Iv-14
L O O Y) o o Iv-15
L0 3) D 83 [IV-15
INS T RUC TIONS . .ttt ittt et eaeen e e eseneneensseeeaeneenennsnn reternarans IV-16
SPECIFY COMMAND UNIT . ittt ittt teeittesieenneenesnsneneseasenesnneennss IV-16
RE A D ST AT U S . ittt ittt te e te it e e eeeesasosesneeseseiesinnnnss Iv-117
LLOAD MEMORY ADDRESS COUNT ER .. vt ttttttteiiettetecieiaereenseennennsns Iv-17
LOAD WORD COUNTER ..t titittitttitene e etiettneeeeseneeneaneennesnneenn IvV-18
READ MEMORY ADDRESS COUNTER ..ttt ttintintonteteeenenaeearennennnens IV-18
PROGRAMMING .+ttt ettt sttt i et et s aeenessauesesssneensonesosesnnenesnnnnss Iv-18
Phase i Initializingciu.iuuiiiiniininiin ittt et ineeeeennnen, IvV-19
Phase II: Position the Tapeouiuinttiiiiiiiiiiiiiiiiiiteteerinnnneneennns Iv-20
Phase III: Specify Transfer Parametersv.uet et ereenseneneenennnnennnns Iv-21
I NG oottt ittt et teneeeteeonenaseenneneonenennseaenesasnannsnnss 1v-23
ERROR CONDITIONS ..ttt ittt ittt tnratnenenenenenenenaeosnsnnnsaenss Ceereraeaas IV-23
During Initializing vtniiri ittt ittt ittt e et e et e, e IvV-23
During PosItioningttt ittt i ie ettt te et enrneerneennens Iv-23
DUring Reading ...ttt ittt ittt et ettt ee et e e IV-23
DD ITE g8 Y o 1 o - 1v-23
SECTION V
DISCS
INTRODUCTION TO DGC DISC S .« ottt ttt ettt ttttees e tteneteeesoesneneennnnnnnn, V-1
DATA FORMATS ON DGC DISCS .t it ittt ietete it eeteieseroneeenaneennnnnn, V-2
AC CE S SING . . ittt i e et e e e e e e e e et e V-2
DGC DISC SUBSY ST E M . .ttt it ittt ittt it tae e eteteeneeesaesneneaneii, V-3
SHARED DISC CONSIDERATIONS oottt ereneneaeeensecesasnensesnsaneensnens vees V-4

TABLE OF CONTENTS (Continued)

SECTION V (Continued) Page
FIXED HEAD DISC SUBS Y S TEM . .ttt ittt etierernnrneenesoennsocnsennecsnnas Ceareaea V-5
INTRODUCTION ..ttt ittt ittt ittt s ieseeesesnsnsnsesesnenensnnsssnensnaas V-5
INS T RUC TION S . ittt it ittt ittt et ettt e easasaseeneneeenenenensenesansnens V-6
SPECIFY TRACK AND SECTOR .+ttt vtvnrretrernnnenenenenenensnennnss Ceeieaaaen V-6
LOAD MEMORY ADDRESS COUNTER .« vt vvtttvinenneineneneneenenns feae s aeanann V-6
READ ST AT U ittt it it e ettt i eennenesnensensnonassans cererennes V=T
READ MEMORY ADDRESS COUNT ER .+ttt ittt ittt itete e tanenenennensnesneas V-1
DIAGNOSTIC ittt ittt et ettt ettt esreesennansensnenosnnnaas Cereerees V-1
PROGRAMMING .. ittt ittatnnnennienneenenenenonenseeasnsaranasns Cehereaaeas V-7
Phase I: Specify the Parameters of the Transferoiviinternenrecnonnnnns V-7
Phase II: Initiate the Transferc.iviniiiiiiinririnennnnnnns cesens evee, V-8
TIMING ..ttt it e ittt ittt et ceieenans ettt s V-9
DISC FORMAT ittt ittt ittt ettt taerateneaeaninssneensosenss Ceereraans V-9
ERROR CONDITIONS .ottt ittt ttaeneenancaneanenasasenonseasenenss Cerereaaan V-10
During Specification of the Parameters of the Transfer..........covvtiinrieneennens V-10
During a Read Operationttt iiit ittt it tists e tnenaeoseneeneaneanenn V-10
During a Write Operation ittt i e eteitneranenannns V-10
THE 4047A AND 4047B DISC CARTRIDGE SYSTEMS . ittt ittt ittt ineennnrenenan e v-11
INT RODUC T IO N S - o ottt ittt ittt ittt et s s eanasseeensneeennanneeeeenannnns vV-11
L 20 O 0) e V-12
SPECIFY DISC ADDRESS AND SECTOR COUNT ..ot iiinieitirertnenrnonnnnns veee. V=12
SPECIFY COMMAND AND CYLINDER . . .ttt ittt ittt ee e iieie e eeaenennss vee. V-13
LOAD MEMORY ADDRESS COUNTER . &ttt it ittt tttnennsnenenenenennenessns ee. V-13
READ ST AT U S . ittt it ittt ittt eeeeaenaeesnsensesnenenansnsneas veeesissss V-14
READ DISC ADD RESS ...ttt ittt itetteeeeatnnenennenenseneanens I 2
READ MEMORY ADDRESS COUNTER tvitttiiiiinreennrernnenenss . cee V-15
PROGRAMMING........... et e e it et e eeee it .o V-15
Phase I: Select the Drive, Surface, Sector and Number of Sectorso.vuu.n. V-15
Phase II: Positionthe Heads..........ciiiiiiiiniiiiinnennnenn, et V-16
Phase III:" Read or Writettt ittt ittt et e eeeenaanns vees V1T
TIMIN G . i ittt et e te e tatin e et ensnnsnsonennennnns creesneaes. V=19
ERROR CONDITTIONS .ttt tttittetettattateteneenenneeeeneseensonsnnsosensonsnans V-20
During Initial Selectioniuiuieiinint ittt et ettt ennenenens ereees. V=20
During Head PoSitioning oottt ittt ittt ittt ienaineneenns V-20
DUring Reading ...t i i i it ittt ittt et e i et e, v-20
D1 o oY o L oV v-20
THE 4048A DISC PACK SUBS Y S T EM .« o it vttt tet ettt teeveeneeteneresneonaenasnneseneens V-21
INT RODUC TION -t ittt ittt et ettt aa e et e neanensenaenansonsnnssneeesneeneeennas v-21
INS T RUCTIONS ..ttt ittt it te et e aneeeeeesanenennnnenseeenonenss Ceereaeas V-22
SPECIFY DISC ADDRESS AND SECTOR COUNT ...t ttvtnr it ireiieinennnnennnnss V-22
READ ST AT US . ottt ittt ittt it e ieseearnennonnnsens Ch et V-23
SPECIFY COMMAND AND CYLINDER . ¢ ittt it ittt ietenteneneeneneeneneonsnnnnss v-23
LOAD MEMORY ADDRESS COUNTER -« e\vvtetreeineeeinennnnnnns cereeriensae, V=224
READ DISC ADD RESS .ttt ittt ittt eete et eeeeneasenoeneaneaeaseneensnnss V-24
READ MEMORY ADDRESS COUNTER .. vut it ttittteintteeneneneseesosensasensanens V-24
Rev. 03

viii

TABLE OF CONTENTS (Continued)

~ SECTION V (Continued)

Page

PROGRAMMING . ¢« ittt ittt e e e e e i, V-25
Phase I: Select the Drive, Surface, Sector and Number of Sectors V-25
Phase II: Positionthe Headsciiiiiiiintnnnee e, V-26
Phase III: Read or Writeoiutuiinierinitinie e s, .o V=21
e + ¢ | V-28
TIMINGciiiiniiiinnnnnn. e e et e et e e e, V-29
ERROR CONDITIONS ..ttt it tttittee ettt iteeee e e e tmmaee e, V-29
During Initial Selectionouuiiiuiiiiiie ittt e, V-29
During Head PosSitioningouuuiuttnniiinnnttee s eeee e, V-29
During Readingouuuut ittt ittt et e e e V-29
During Writing i e e, V-30

0 1 TET0 3 5 3 Vv-30
THE 4057A DISC PACK . ottt ittt ittt ettt et e et e e e e e e V-31
INTRODUC TION . ot ittt ettt et tte e ee et te e et eeeee e e ne e ee e it V-31
INSTRUCTIONS .\ttt ittt ettt ettt e e et e e e e et V-32
SPECIFY DISC ADDRESS AND SECTOR COUNT . .tvvvverteeeeennnnennnnnnnn., . V-32
READ ST AT US . .ottt ittt ettt ettt ettt e e e et ceree V-33
SPECIFY COMMAND CYLINDER .t ttttettitnet e eeneesenon s, V-33
LOAD MEMORY ADDRESS COUNTER - . vttt tttietteeeeemesmmeenonanninni, V-34
READ DISC ADDRESS .. tttittitiier et tenetenseteannerneeesnnenanens Cher e V-34
READ MEMORY ADDRESS COUNTER - .4ttt tttitetttteesonesennaneenannnnnns V-34
PROGRAMMING . &\ttt ittt et et ittt tte e e sae s e tanenseneeeaneeneinnii, V-35
Phase I: Select the Drive, Surface, Sector and Number of Sectors V-35
Phase II: Positionthe Heads...........oviiierrnnnnnnnnn.. Pt tei e V-36
Phase III: Read or Write. .. .ou ittt ittt it et e ettt V-37
Foormat .. e e ettt et e evee. V-38
TIMIN G i i i it it e e sttt te s eneseesaenenesnaneseennenesnennennnnuis V-39
ERROR CONDITIONS ..ttt tttttiet et te ettt ernenneeanesnneenesneesoneoneennenn, V-39
During Initial Selectionvutiiiuvrinniin i tet o ettt V-39
During Head Positioning.oviiiuniiiiiiiiit i tneteeesenrnnnnnennnnns V-39
During Readingc.oiiiniiineineiin e inettreeneeaeennenneennenns ereeaee V-39
During Wriling ... oo i i i e e e e e e e e V-40

L0 4Tl Q1 o o T V-41
THE 4231A DISC PACK SUBSYSTEM PR ¥ K
INTRODUCTION ...vovvennenesnss D T T S AP ¥ g ¥
INSTRUCTIONS 1. ittuueereuesssseseosoassoooansonoosesnsossnscesasscocncnsneesss V-dd
SPECIFY DISC ADDRESS AND SECTOR COUNT .tvvvuiriereereronnnnennneeseeness V-dd

READ STATUS .tuuvtunetererarioseososeeeoeasesososesasossasossancoeeennssss V=45
SPECIFY COMMAND AND CYLINDER ..uicvetennnnnneacesenccosaocasasnnnsanss V=45
LOAD MEMORY ADDRESS COUNTER +1uuveetereeveosoarsonncassocosssnsceesss V=46
READ DISC ADDRESS 4t 4vcverrernnrenennnsasannns I A T
READ MEMORY ADDRESS COUNTER ..vvvevveeecoreosossececsoscsasoseennnass V-46
PROGRAMMING . oitvteteesaesonosesoaosesesoesesnsessososossccnaonnncnonnveness V=47
Phase I: Select the Drive, Surface, Sector and Number of SECtOrSeoovvees. V-47
Phase II: Position the Heads .uevereiiirieeetooneennrosennoosussssonnnnennnss V4T
Phase III: Read or Write Srerserecescsnsasesesessarncasaneronsness V=48

ix Rev. 04

FORMAT
TIMING
ERROR CONDITIONS ceeeeeeas cesteenaes
During Initial Selection cesessans sreseans ceevesana
During Head Positioningcccvvevuene. teeensns cesesians
During Reading ceersoees coesssessecsosonsnnans cesanen tesesesssas
During Writing cessecenees cheesnaaas coseecnas ceecsens

TABLE OF CONTENTS (Continued)

SECTION V (Continued)

| CARTRIDGE DG/DISC SUBSYSTEM MODELS 6045, 6050, 6051cccv0nn..

INTRODUCTION .ttt ettt ittt nersseosuoostonsesarosanssnnsnenonsass .o
CONTROLLER REGISTERS Cieoseeseciesteseanesteannns ceeaea
INSTRUCTIONS 4 itvticuctneenroncsssscnronsenassnsoesoeeessensaneas cheee
Instruction Coding Conventionsueueiviternenennennenronsosens
Specify Disc Address and Sector Countceevveimeneeennoonsennes
Specify Command and Cylinderccceieiornrnrenenesnronnnens
Load Memory Address Registerciuiieieeniinnenrneneneannnss
Read Status . ..o vvtiiiiiiiiiiiornneennnnas Ceeeesesasasacessssarennns

PROGRAMMING ¢..tvtttvnneeneuesansesossosoanatnsensoenssnnssansonas ..

FORMATTING

Read Disc

AdAresSS tvutitiieiiieeetereenneeeeeasoasesesessosnsness oo

Read Memory Address Registerc.cvivviiiiienennnn. ceeeseernsee

Phase 1I:
Phase 1II:
Phase III:
Read
Write

Select the Drive, Surface, Sector and Number of Sectors
Position the Heads ..
Read or Write .ivivtinennnneinnneeenneoenosennensesonns

ERROR CONDITIONS .ttt cetvenoneeneraceeeseaneesnsesssoniansseasesnsaos
During Initial Selection (PhaSe I) ...cvtcernonenrneneneoenseesensosoonss
Absence of Valid Statusoeerionnnrononnnreononseosnnes ceennee .
Unsafe Error vv..eeveniiennnoneoooseensncnnnnns teertsocceeseenns .
During Head Positioning (Phase II)coveesun. et eresrrcscensoensoe
Seek Retry ceeersenesennn ctescssscressesscscesrossannne
During Readingiviiiioeeaecontoesocosaneosaocaconanoanceonsnss
End of Cylinder Error Gacecesiseisencatssatatatasanerecnnnne
AdAress ErrOr iuevieeeieronenenosoasosesesansasascenesnnsens .o

Rev. 04

During Writingcceiiiitiiierentvensssonsnnnacnennos ceesscoessse
End of Cylinder Error ...cececeeeee. coeoenn Ceteteiciicenrsnanoos
AdAress ETTOr vt ocuncreeoeonceroenscnseneoassasassnonsnncen .o
Data Late ErTOr ... ooeonernssosassoconnoesossaseessoseoncsenons

MULTIPLE DRIVEStiiiiietitaessesenssssocosncncssonncocnns cecooee

Phase ITI Considerationsoeesoeoeeceoesoecaossesssoonsonosnnnseesos
DUAL PROCESSOR CONSIDERATIONS o.vvveeeceoeccecocnoss cesssencoses .

Phase I, Initial Selection coccsscess cccccsssscosns N cooann

Phase II
Phase III

............

............

............

oooooooooooo

Page
V-50
V-50
V-50
V-50
V-50
V-50
V-51

V-53

V-54
V-54
V-54
V-55
V-55
V-55
V-55
V-56
V-56
V-56
V-57
V=517
V-57
V-58
V-58
V-59
V-60
V-60
v-61
V-61
v-61
V-61
V-61
V-61
V-61
V-62
V-62
vV-62
V-62
V-62
V-62
V-62
V-63
V-63
V-63
V-63
V-63
V-64
V-64
V-64
V-64

TABLE OF CONTENTS (Continued)

6030 SERIES DG/DISKETTE SUBSYSTEM «cvvceeeevnnenennronnn crtesseessetcasoean cereceacaa
INTRODUCTION0000. €t ccesacecesesaasoeeannon esteccseecennoas cesaenane ceevos
CONTROLLER REGISTERS .voveovenvoe. ceenne s eccssesseanecesenanennenens rorseceas
INSTRUCTIONSvveveeennsn coeanenn eeresesanon coeene ercoasenenn Ceeestenatesesan

Instruction Coding Conventionscoeveoeean N Ceseecsenanenenn
| Specify Command and Trackeeevveerneneees sonenns cerrersetens tecerasns
Specify Disc Address and Sector Count cennee Cheetesienennenen
| Load Memory Address RegiStercoveeereenrnnnesronennneneens
Read Status ceecrieseosones
Read Disc Address sosoecs tecsoececenee coeens erecececocens cecsesoeas
Read Memory Address Registerceeeeveeenns G tosteeeaetaencentrnererana
PROGRAMMING Ceesecerecesennenne cecaeenes
Phase 1I: Select the Drive, Sector and Number of Sectors cesoresans
Phase II: Position the Heads crcesareane cieoaeenn ceerratioeenes
Phase III: Read or Write eenon teeeronann ot renenennaccnoons cececeevenee
Readcviivneenens sobessrossens cesosesscscesoreesseo coeasces cecessescene
Write Gt eesecesossseses e s eceneanennnnoo ceteetonens ceeenee
FORMATTING eeecrsosececas crenaas
TIMIN G Lottt ittt ieeeneeeaeennsesoesneessoeoasesoanaesnenenoneneneenns ceeree
ERROR CONDITIONS Ceecesececeaseescecanens cseeen Ctoteeteeeenns ceeteernanns
During Initial Selection (Phase I) ceereeneoes eeereeen ceeeceseonns
Absence of Valid Status cesroeceeesaneeeens
UNSALE ErrOr ouovsittaneaoecnonenonsnsacnosoasaoeenssnnsnnsnnnnonno.
During Head Positioning (Phase II) et e et tene et eea o, ceeaes
LT g 11 cesecenannens
During Readingce0vvunnn. et oannes crcssetcaoas ceerrenecens
, End of Track Error o .ouuentiiiineneeeernseneaeeecnonnnnsnnennnnns et eaeanae
Address Error vveeeeerrnenneeenonnconennans e crteceseteeseseensan ceetriniens
Checkword Errorvoeoeeeecon. tecesarrecnens cererians chereans
Data Late ErrOr .. cunueeeeunonenaneeenneensoanocoeeneeenesnesonneennnn. ceenn
] During Writing ceeeen Chetteeeaans i eeeceare et Ceeoreae
End of Cylinder Error Ceieeteteaiai ettt
AdAress Err0r ouvutiiiitinenenneoreseeeeasannnananns e ecetreeseeenens caeeees
Data Late ErrOr o..iouuitttiniorneeeueeereannnesnneseenneenneneennanonennis .
MULTIPLE DRIVESttvittencnesennoecononnne ovnves ererernneen Ceeeienn
Phase I Considerationseeeeovoeeeenos csoseenna e ec et e eeeeeenannn
Phase II Considerationseeieeeneennteeroreeeneeneeoneeonennnnnn. reeeeane .
Phase ITII Considerations cesreeac et ctanaons et eseessenans v e
DUAL PROCESSOR CONSIDERATIONS t.vverernennnennnenns cetetateneen teeesateaanne
Phase I, Initial Selectionuvveerinninernneennreneennsnnarnnennns Crrerrreeees
Phase II ...ttt et nerinrnneeeoroasenaesnnneeannannns creeceneanas ceeanan.
Phase Il ceeserannenees serens N IR Cheectssessaneenn .o
| 4234 SERIES 10MB CARTRIDGE DISC SUBSYSTEM creenaas et ssseanaaaneeannn
INTRODUCTION v0ene. . cetetiaieeens Gt e e e s ecetetaatetannaannen ceeeenans
CONTROLLER REGISTERS . tttuettinuttennneenaseeeneesnsneseennsesenneonansnnnn,

TABLE OF CONTENTS (Continued)

SECTION V (Continued)

INST RUCTIONS . iiietietreeosooocenseoneesssoneesvasonsaoansnsss
Instruction Coding Conventionsc..cevevieneens Ceeeesuseenseassteaccrasasrenans
Specify Disc Address and Sector Countceveveeecns ceanaanas cecerseeenceons
Specify Command and Cylinder etetreasaranaes Ceciiacent et a e ceo
Load Memory Address Register Ceesececenraestnansenns ceeenranae ceseen
Read Statuscivvevnnnrnoerennns Ceteseciraneatenecteneeananans cierearranann
Read Disc Address ceessassasscecsrsaanann seesanenans
Read Memory Address RegiSter o uu.eerentenenererenesrensneassencasnnsessssensens

PROGRAMMING ..vvvtveeeencennsssooesnannsnsosssnssanssns PR
Phase I: Select the Drive, Surface, Sector and Number of Sectors cesesoan
Phase II: P031t1ontheHeads cesanenn cecreiaeasesans
Phase III: Read or Write

Readiiiiiiinneeeeeennconcncnnnaonns ceetresaraaans e ererecarerrracesena
Wrile .. . iiiiiiiiieieereeenennnans e eresennaaerenenes cerenaacsan

FORMATTING C e teceseceresetecectatececneseenane Creseaeneeen ceeseereanann .o

TIMINGc0iveerereecccanas et sessoacscessoes et s tereneanann

ERRORCONDITIONS cesevaan teebesecareosoecans Ceecesiseseanscetannenn
During Initial Selection (Phase) tesesersenserartansean fersecernesen .

UnSafe ErrOr ... cieieeeeeoeooeeseeessenacsasnesaocecononsens ceosecosans
During Head Positioning {(PhaseII)covuvenne ceoeeciscateesesaeons
SeeK RetrY ouuriivvrontsiseenssssosenssosasessssonncassensasasseosassscannones
During Readingvveeoveees Geescesssssecssssseseesnsrane s cessaencscasans
End of Cylinder Errorccc0cvceone serossssseneroene ceesoscsosrensosesas
Address Error ...c..ecicecececeoscncaess eeeseosreacenss
ChecKkwOord ErrOr ..u.veveeeecnocconcaceonasaens cesoenas et ecaceosersessenen
Data Late Error ..veueeeeueeeoronsans e reerananeao et eeer ettt e
During Writing c.cosceorosscesosoeesssesaseossessoncssnonsnsecesosacconsens
End of Cylinder ETrorivioioecesecacscncesassossasaos ceesssosssennsans .
Address Error e eceseoeasoeessece s et oo st et s sse et et aseroes s aoene e
Data Late Errorccvevee.

MULTIPLE DRIVES ...c...cce00.0 ceecscoscasoaneas coesrocecnsons
Phase I Considerationscccveveee.e cessscosssacs
Phase II Considerationscccececeneee crenas seereeoanes
Phase I Considerations tececesssesecsasenssanraceos cessrenssans cecrenas

6060 SERIES DG/DISC STORAGE SUBSYSTEM Gt eenveeretenastteentsstsannaseacneanan

IN T RODU CT T ION &ttt it ittt teennneeeaeeassoenenassssesnseoeasenassenssssesssneasesas

CONTROLLER REGISTERS ivittieiinrnrnnnnns cieeaaan creeeee Cherererereane

INST RUCTIONS ..ttt iitee et teeeeeaneseeanoanenessonsonaneas Ceeeaeeaa et rereeas
SPECIFY COMMAND AND DRIVEvettinrrnenneeneonnens cecenrasaes
SPECIFY CYLINDER &+ttt iitettrenrereenesensoeansosaneennnsensessssonses
SPECIFY SURFACE, SECTOR AND COUNT.....vvvevenneenanns eee e
READ SURFACE, SECTOR AND COUNT iteteuesnneanosesoasessnonesasonnnsons
SPECIFY MEMORY ADDRESSt iiiiererroeeeeneenroronencnanans Ceeti et
READ MEMORY ADDRESS ..t itittitrieerrneeneeeenrassnenons ceterateannae et nae
READ DRIVE ST ATUS 1ttt vetttecesetnserosssnssnsosanans cheeseen s ceeeese creens
READ DATA TRANSFER STATUS ...ttt vrrennennnnnnnnns e e et
READ FIRST ECC WORD .. i.itiitttneeneeneseoeencnaseasonsassns Ceserteetsesa s .

. READ SECOND ECCWORDvieitiiinenevrceneesannns cveaann ettt eeseene e
Rev.05

TABLE OF CONTENTS (Continued)

SECTION V (Continued)

PROGRAMMING DETAILSttttttttterrnereenennennnennnnnseneennsnns
Phase I: Select a Drive and Specify a Seek Command -
Phase II: Position the Heads,cov'veereenennnrnnennnsnnnnnn.. ceeaee
Phase III: Select a Drive and Specify a Read/Write Command eaees
Phase IV: Read or Write,......... eiterticeecenen Ceeeeea feereteaeeas
Phase V: Release Drive Ceteearenenn cveeas ceececraenanans

FORMATTING . \ittttiiitinnetetitieeesenesaeseeeeeneenseeneenennenneis

TIMING ..ottt ittt ettt e iernsonoaeeoenens cerene

Read ittt iiteenennnn, B e een

BBBK Lttt i e e it e ettt r e,
StopDisc e et eesaes e een.
Offset Forward.............oc0.... f et e e ree e nbe e e e et .
Offset Reverse .v..vvveeineennnnnn cesesee N e ee st ce e e

Write Disable cevee C e e e et e e e e e an e e e .o

Release Drive....covvvveiveinnnnnenns ret e, Cecnenas e tercoaean
Trespass «...vveivreeninrnesensons S h e e seeree st asaete e res e eunn cesann

Set Alternate Mode 1..........ovvvvrnnne e eeenen ceeeeneeen Cretecear e naenas

Set Alternate Mode 2.iiuirtenneinrnnnnroneeeeeeoeseneeneesoeneenns
NoOperation.........oiviviiineennnnan. e reiesees e heeaa e e
DT =D o A

Writeciviiiiiiiin., ceeeean cevesens ceeeen crcesesseeneenas

Formatc.viviiirinnnnns ceeeee tesssecatesiensneneanes

Illegal Address........... ceennaan e,
Illegal Command............ ceseernennn ceereasianeanaeas cesees ceense

Dc Voltage Fault,....... e neeeeans et in e Ceeneeee. Cereaee e

Pack Unsafe.....covevenenennnnnns ceeeenas et senenes oo ereseennnns

Write Faultciiiiiiiinnrnrneennnnasns Cetrenersainee ceeeeeane
Read/Write Faults ceeeas feeereseraaeaaa ceeetiaens teeeetaina

5 o L cereneans .

Bad Sector........... tecetreraannene crecaaiaas e teccaieereoan e e
Cylinder AddresS .. cooeivieerererntarosesnseaannnens e cvreeees
Sector or Surface AddresSS .- cveeeeeeeseesss crer et it e e ceroeeen e
Verify ...vviiiiiiiiiiinen P

Durmg Head Positioningcooiiiiiiinnnrnnennn. et teaeeeenaaes

ooooooooo

.........

.........

TABLE OF CONTENTS (Continued)

SECTION V (Continued)

Page

6063-6065 SERIES FIXED HEAD DISC SUBSYSTEM et P ' B |
INTRODUCTION ..,.. P eteeecieeneera Ceeeeecenenas Ceeeeeceaeens P [15
CONTROLLER REGISTERS ceeeeces eceeenraea cececeenens eereeserneas L.V-122
INSTRUCTIONS...... e ee e e et e e Ceeetenereeaans Cheeereeas cere...V-123
Instruction Coding Conventions ,,, ... ceereenees reeressseeenenes A £ P4
SPECIFY QUEUE ADDRESS .. .ittttnttereneenneeneenssenesomesoenesmsssasanaaai, V-123
SPECIFY MEMORY ADDRESS........ . e eeeraeaa, ieeeas ettt V-123
SPECIFY ALTERNATE INSTRUCTION TYPE e eee e eaea, ereenaas ve...V-124
READ MEMORY ADDRESS ceserecenn ceceersensons ceeeeseeevanns eceteenennannn V-124
READ FIRSTECC WORD . ovvvrvrreennnnnnns. e et et ettt aeanas V-124
READ SECOND ECC WORD . .voviteteetensesrnesansasennnnennnennens et .V-125
READ QUEUE ADDRESSc0veuunn.. et ettt e e, V-125
READ ST AT U Lttt ititterteenrveesseseseseeneesnnssaneensessessseeaneseesonneaness V-125
COMMAND QUEUE FORMAT . ..\iuttttnnrrnennsasessosessnesasnaeneensnneans eseeseeonnoan V-126
DISC AD D RE S .. ttiveerstreererennesenenneenusssoesaonenas e, e reiea. V-126
COMMAND'0ivvenrenanoenooennanes cerenoneeas et es e ees eesscseresneese. V=126
MEMORY A DD R E S ... ttetttetteteeesneesesenesonsensoneseesensessseesssnneunnns V-126
STATUS iiiieiieiininnnnnnns et cebeenaas e ereiere e, .V-126
USER AVAILABLE WORD .,............ Cereeeaaa et Ceeeean R V-126
PROGRAMMINGcovuvu... e reeeeaa. ettt e et L V-127
WRITE ..., . .ittitiiirenennnennsnnns ettt raeeaas e, v-127
READ et e ettt et et et e e e e e eer e, ee.. V=127
DATA VERIFY et veeee e e reererr e, e eveetee e e v-127
JUMP iiiiiiiennnnnns cecrerevens crevecsenseee ceseoresennn creerenees vereesss. V-128
IDLEottt itsiiennnnnes eeses e sececsese et enneeennnn e rreeseeseene o erenns V-128
READ/WRITE BUFFERco00vuu.. et eeeee ettt raenes et V-128
STATUS CHECKING00vevvvnn. Ceseceeesssestecarnessnneses e eeeeceseees e venanens V-128
TIMINGc0... et et et s e eceeacenonenens v ereereevaes ceeteereenens heeereerenne vV-129
ERROR CONDITIONS ettt et S, fheeeeeeaaes veeeeer.. V=129
Parity Error eeereaeena, e ettt e V-129
ECCError,oovveenunnnn, et e e e, Ceeeen. et ee et e V-129
N30 8840 2} o (< et ireiaaa. cheeneee. V=129

Data Late ., ittt iereeeernenneoannanas e et rre e, V-129

Sector Pulse Error,........... et reeer e e eeeer e e ..V-130

Disc Unsafe |, uuiriinrireneiisrresasnessnnennnnns o ee et e e, V-130
Address/Data ErTOTuuereeneneeeeernnnnneeeeeneonnnenenes B v, I 11

DUAL PROCESSOR CONSIDERA TIONS L.t vttteersceeneannaseannonesoessasenenns i V-130
DATA’ ERROR CORRECTIONovvvvveens et eccereneeenn P V-131

Rev. 07 xiv

TABLE OF CONTENTS (Continued)

SECTION Vi

ANALOG/DIGITAL
DIGITAL/ANALOG

Page
INTRODUCTIONTODGCA/DANDD/ASUBSYSTEMS VI-1

ANALOG AND DIGITAL DATA ...cv..... VI-1
Analog Data v vetioteierrenosareososarseotosecseosasosnesasncessocsscssncassssss VI-1
Digital Data «.vuvvieeneuereeorrossnssoesossoesesosoneeasnesncassassacsnsnssosnnsns VI-1
Analog/Digital Data COrreSPONAENCE «.uueeoeossoeseeeseseeosssnsssosssesssnsnnnses VI-1
Digital Representations of Analog Data «.u.uveeerececoeesoescoscacesesasossosssosns VI-1
DATA ACCURACY ..vvvicananns ceresencnas ceseceesesanssresrsaans VI-3
4120 SERIES ANALOG/DIGITAL CONVERSION SUBSYSTEM . vtvecuoronesoconcennnscannsen. VI-5
CONFIGURATIONS 4ot oeceserenscecessoecrotreneteseneanns cessesnsans ceeserssees VI-B

Programmable Gain Option ttcececesecsoroscssecsoessscssecsseassnnasass VI-6
OPERATION . .iuvuniieuneucnenoacessososssosssossansesossosssssssssesessssessnnannes VI-T

Modes of Operationeoecee... ceveasasanae cetesecrstsertsstatesscencssssesssses VI-T

Conversion SEqUENCE ..u.uueueerconesrorssiacseeecessesoneoseoossocsasannansnnens VI=T

Synchronization to a Clock csessecessescocoaene VI-8

Power-Up COnditions «eoouecueseooecosonseeeannsoesnsnosnesossnsesesnsnnosnssssss VI-8

Channel NUMDEIING «ovvuuuoneeeeaooonnneeeeeeoonnnoeesesesssasansnnsesesensnnsns VI-8

INSTRUCTIONS: SINGLE CONVERSION MODE .cvuvvvoeuooesaneassoscssnsoescencasnses VI-O

Basic Controlleruuuueeeeeeeoeonssonosionnssosseesossoosoosossssosaonnenennss VIO

Instruction Setoiveiiiiirieennnnn. VI-10

SELECT CHANNEL ..0uitittuutueesssassossoscsonssnasannssocnssssssncsasensnenes VI-10

READ CHANNEL SELECTcce00ue.. O ' 5 X4

SELECT GAIN 4uuuueenrrcanusesnecesesssssoesscosesssnssssossnsosssscescscasens VI-10

READ DAT A . iiuuiiiiitierocnsonsssoossoecensesasessansossnssessesnsnnssnness VI-11

PROGRAMMING: SINGLE CONVERSION MODEcvveeeereecosennnnsnoosssconnseneess VI-11

EXample . .oieoiiniiiiinniieetaeseoroseessessnsassoneonneessonsssnsssssncenasnees VI-12

INSTRUCTIONS: DATA CHANNEL MODE ...uveceoecsecoeosooesansncasancacsocannanses VI-12

Extended Controllerueieeeeoiorosoesosaosasosesnssseassssescsnsaossnscnssess VI-12

SELECT CHANNEL AND LIMIT ... tcuveaesoceeoncoosoonassonnansnnsossssenceeens VI-13

READ CHANNEL SELECT AND LIMIT ..uvueveceeosceococnsoessoosooscsoscsoeeaess VI-14

LOAD MEMORY ADDRESS COUNTER ..coveveverornceessnnannss P 4 O

READ MEMORY ADDRESS COUNTER .tvvvenseenseceaccenanesssncocsssnssnncsnses VI-14

LOAD WORD COUNTER +cv.ietuireseesecroescassossscnnssoasssssosssacssccssnsees VI-15

LOAD WORD COUNTER AND SELECT GAIN ...iceeeeececesossncsocesscncsosonseees VI-15

Programming . .uueeeoeinnieeesiaeeoncrsnsescsnscsoesesnesanssnnseassssssascenesss VI-16

B XaMPle L ititiiiinenentetetenresnersrossoetacecsosnsarncasasnsessssesscscensess VI-16

PROGRAMMING: SINGLE CONVERSION MODE WITH
DATA CHANNEL OPTION PRESENT 4.t tuectooassetonsanconcnsnsncassnssoasnsenenns VI-17
TIMING CONSIDERATIONS +ttcuuneeessesonoosesseasaosncesaocosossssscnssssesessseas VI-17

Maximum Conversion Tille ... uueeeesaossssosoesossossensesssacssascsosnessoness VI-17

Typical Maximum Conversion Rateceveverveceserosercocceeeconsonssnnsncnnans VI-17

Clock Settings . evveevueeeonnsssosesnssecasooasencecssssnsssessssasessosnsnensees VI-18

Additional Considerationseveeesssesosceesessscsssassosssssacosssassssscnsseess VI-18

Rev. 07

TABLE OF CONTENTS (Continued)

SECTION VI (Continued)

4180 SERIES DIGITAL/ANALOG CONVERSION SUBSYSTEM ..covvveveeeenss teeetecaneannnnns
CONFIGURATIONS . .uvtieeecsnnoacsnncsnasnana
Scope Control Optionecveveveennscecesenns ceereessanens crteesenenes cetaaanes
OPERATIONoovverercancvsonnanae Cesecesreciassesenassens teceoees
INSTRUCTIONS: D/A ...iivnernscrnsascornasnsanns Ceeeeceseearerarenesnsaraesns
SELECT CHANNEL ..uuiituuieernsosesnssssvosssssecssassassssosasanse
OUTPUT DATA AND CONVERT ..cvueeesooeocoosssasoossssssoosasssssnssrsnsnssss
PROGRAMMING: D/A tettituietearoeresaceassarssoessassaoascsssss
Timing and Accuracy Considerationso.eeeeiereieeneeccensosccscscsnsns ceessenen
Example ..ocvevvennnne creseasaas
SCOPE CONTROL OPTIONccovsesnsocccnsnsesoses seeeceacsesecacanas
Operation
INSTRUCTIONS: SCOPE CONTROL ...ceveesesnccascens teseessssesens erecesesessse
SELECT SCOPE MODE sesresseans
READ ERASE STATUS ..cecivevesovesconscens

PROGRAMMING: SCOPE CONTROL ..vsuvvereossscoossssessscsssssssscssasosssnnsssss
Emmple LRCIA B N SRR B Y AR Y B RU BB A BE B BN B B B BRI B BE Y KO B R B A I B B B I B B A B AR A I B B N B B B Y I U BB O A B)

APPENDICES
APPENDIX A

1/0 DEVICE CODES AND DATA GENERAL MNEMONICS cevens Cirieeaes Ceeerecneenens
APPENDIX B

OCTAL AND HEXADECIMAL CONVERSION Ceresnceceesierronns vearas beeseseeaes
APPENDIX C

ASCII-128 CHARACTER CODESivvveenrnrnnnnns Cecencasecans Ceesrenenen

EBCDIC CHARACTER CODES creeeacncnenrans ceeenoan Creseearecns
APPENDIX D

NOVA LINE COMPUTERS INSTRUCTION EXECUTION TIMES ...vvetesvccosssooescssooosnoes

ECLIPSE COMPUTER INSTRUCTION EXECUTION TIMES ceesecsesernas seetssensune

APPENDIX E

CODING AIDS &ttt ittt veenaeesesassseoasonsessasonssssssnssanssancsosssvsnoasssssassns .

Rev. 07 %vi

VI-19

VI-19
VI-19
VI-19
VI-20
VI-20
VI-20
VI-21
vIi-21
Vi-21
VI-22
VI-22
VI1-23
Vi-23
VI-23
VI-23
Vi-24

C-1
C-5

D-1

D-2

SECTION |

1/0 PROGRAMMING

@® OVERVIEW OF INPUT/OUTPUT

® 1/0O INSTRUCTION SET
PROGRAM INTERRUPT FACILITY
DATA CHANNEL FACILITY

® TIMING

® PROGRAMMING EXAMPLES

This page intentionally left blank

OVERVIEW OF INPUT/OUTPUT

INTRODUCTION

Input/output is the process of moving information
in a computer system between the central process-
ing unit (CPU) and peripherals such as card
readers, line printers, terminals and disc units.
Some peripherals, such as card readers, enter in-
formation into the system. Some, such as line
printers, transfer information out of the system.
Some, such as terminals, transfer information in
both directions; and others, such as disc units,
store information within the system. Peripherals,
therefore, can serve two main purposes, they pro-
vide the computer with a means of communicating
with its surroundings, and they supplement main
memory with secondary storage.

A peripheral generally consists of two units, a
device and a controller, but it may also include an
adapter. The device, sometimes called a drive, a
transport or a terminal, is the unit with which in-
formation is read, written, stored, or processed.
For example, a terminal's keyboard ""reads' in-
formation; a plotter '"writes' information; a mag-
netic tape transport ''stores' information; and an
A/D converter '"processes' information.

The controller is the interface between the computer
and the device, interpreting commands from the
computer to the device and passing information
between them. For example, a moving-arm disc
controller can translate the track address received
from the computer into positional commands for
the disc drives access mechanism. Once the
access mechanism positions the read/write heads,
the controller translates the data words it receives
from the computer into the sequence of bits re-
quired by the disc drive.

The adapter is an additional unit required by some
peripherals to complete the communications link

1-1 of 54

between the device and the controller. It performs
functions which are similar to those performed in
either the device, the controller, or both. Since
the adapter cannot be accessed by the programmer,
it is usually transparent.

The communications channel through which all in-
formation passes between the computer and the
controllers is called the Input/Output (I/O) bus.
The central portion of the I/O bus is a 16-bit wide,
bidirectional shared data bus. Since this bus is
shared by all the controllers as well as by the
CPU, it is, by necessity, a half-duplex bus; i.e.,
only one operation can occur at any time. The
direction of all information transfers on the I/0
bus is defined relative to the computer. ' Qutput"
always refers to moving information from the com-
puter to a controller; "input' always refers to
moving information from a controller to the com-
puter.

TYPES OF INFORMATION

The information transferred between a computer
and a controller can be classified into three types:
status, control, and data. Status information tells
the computer about the state of the peripheral: is
it busy?, is it ready?, is it operating properly?
Control information is transferred by the computer
to the controller to tell the peripheral what to do.
Data is the information which originates from, or
is sent to, the device during reading, writing,
storing, or processing.

Irrespective of the type of information transferred,
is the amount of information transferred. A single
bit may be transferred; a collection of bits forming
a byte (or character), 16 bits forming a word, or
a group of words forming a block may be trans-
ferred.

OVERVIEW OF INPUT/QUTPUT

TYPES OF INFORMATION TRANSFER

Information can be transferred between the com-
puter and a peripheral in one of two ways: under
direct program control or under data channel con-
trol. An information transfer occurring under
direct program control moves a word or part of a
word between an accumulator in the CPU and a
register in the controller. This type of transfer
occurs when an appropriate I/0 instruction is
executed in the program. An information transfer
under data channel control generally moves a block
of data, one word at a time, between the computer's
memory and the device, through a register in the
controller. The block of data is transferred auto-
matically via the data channel once the program,
using I/O instructions, sets up the transfer for a
particular peripheral.

Direct Program Control

Direct program control of information transfers,
also called "programmed I/O", is a way of trans-
ferring single words or parts of words to or from
peripherals. Among the peripherals which transfer
data in this way are terminals, paper tape readers
and punches, card readers, line printers and
plotters. Since the data moves through an accu-
mulator, it is readily available to the program for
manipulation or decision making. In the case of
input, for example, the program can decide whether
to read another word or character based on the
value of the word or character just read.

However, because at least one instruction--and
most likely several since the information must be
stored in memory--must be executed for each
character or word transferred, direct program
control can be efficient only for peripherals which
do not have to transfer large quantities of informa-
tion quickly.

Data Channel Control

Some peripherals, such as discs and magnetic tape
transports, are used to transfer large blocks of
data. In order to reduce the amount of program
overhead required, these blocks are transferred
under data channel control. The commands used to
set up the data channel transfer are assembled in
an accumulator and are transferred to the control-
ler under direct program control. The block of
data is then automatically transferred directly be-
tween memory and the controller via the data
channel.

I-2

Once the data channel transfer for a block of data
has been set up and initiated by the program, no
further action by the program is required to com-
plete the transfer. The program can proceed with
other tasks while the block transfer is taking place.
Each time the controller is ready to transfer a
word from the block it requests direct access to
memory. When access is granted, the word is
transferred. Because several instructions do not
have to be executed for each word transferred,
block transfers can occur at high rates, in some
cases at more than a million words per second.

Since the actual transfer of a word via the data
channel could conflict with the program instructions
being executed, the program pauses during the
transfer of each word. This pause is transparent
to the programmer with the exception that the time
required for program execution is lengthened.

PROGRAM INTERRUPT FACILITY

When transferring information under either direct
program control or data channel control, the pro-
gram must be able to determine when the transfer
is complete, so that it can start a new transfer or
proceed with a task that was dependent on the
transfer just completed. Peripherals have status
flags which can provide the program with this
needed information. The I/O instruction set allows
the program to check the status of these flags and
perform decisions based on the results of the
checks. However, these status checks are time-
consuming, so, to avoid the necessity of continually
performing such tests, all DGC computers incor-
porate a program interrupt facility.

The program interrupt facility provides a periph-
eral with a convenient means of notifying the pro-
cessor that it requires service by the program.
This is accomplished by allowing the peripherals

to interrupt normal program flow on a priority
basis. When a peripheral completes an operation
or encounters a situation requiring processor
intervention, it can request a program interrupt

of the processor. The processor honors such a
request by interrupting the program in process,
saving the address where the interruption occurred,
and transferring control to the interrupt handling
routine. The interrupt handling routine can identify
which peripheral requires service and transfer
control to the service routine for that peripheral.
After servicing that peripheral, the routine can
restore the system to the state it was in when the
interrupt occurred.

For computer systems which require large amounts
of I/O to many devices, a multi-level priority
structure up to 16 levels deep can be established.
This structure can be set up to provide rapid ser-
vice to those devices which are crucial to the
efficient operation of the computer system; the less
critical devices are serviced in as efficient a man-
ner as possible. The priority interrupt structure,
like the rest of the program interrupt facility, is
under direct control of the program.

SUMMARY

The following sections of this Introduction to I/0
Programming cover, in detail, the concepts in-
troduced above. The instructions needed to per-
form a direct program controlled transfer are
discussed in terms of their interaction with the
controller and the CPU. The mechanics of the
program interrupt facility together with methods
used to arrange a priority structure are presented.
Methods used in performing block transfers via the
data channel are followed by a general discussion
of the timing concepts which should be considered
when designing an efficient system for handling
I/O. Finally, examples are presented which
illustrate the procedures discussed in this Intro-
duction to 1/O Programming.

OVERVIEW OF INPUT/OUTPUT

This page intentionally left blank

I1-4

/0 INSTRUCTION SET

INTRODUCTION

Information transfers between the computer and

the various peripherals are governed by the pro-
gram with eight instructions which constitute the
I/0 instruction set. These instructions allow the
program to communicate with the peripherals' con-
trollers and to control the program interrupt facil-
ity. This manual covers only those I/0 instructions
used for these purposes; additional I/O instructions
used for special processor functions and options
are fully described in the Programmer's Reference
Manuals for the ECLIPSE™ and NOVA® line com-
puters.

The effects of specific I/O instructions necessarily
depend on the peripherals to which they are ad-
dressed. However, the general functions provided
by the I/O instructions (loading and reading regis-
ters, issuing control signals, and testing flags) are
the same for all peripherals; different peripherals
merely use the available functions in different ways.
In order to understand the general functions per-
formed by the I/0O instructions and how these func-
tions are typically used by peripheral controllers,
some knowledge of the architecture of a peripheral
controller is required.

THE TYPICAL CONTROLLER

From the point of view of the program, a periph-
eral controller operates as a collection of informa-
tion registers, control registers, and status flags,
with which communications are established. With
these registers and flags, the program can route
data between the computer and the device and
monitor the operation of the device. Information
registers act as temporary depositories for infor-
mation being transferred between the computer and
the device. For an input operation, the device
places information in a register in the controller
and the computer then reads the register's con-
tents. For an output operation, the computer

places information in a register in the controller
and the device can access that information when
necessary. Control registers are loaded by the
program and are used to control the operation of
the device. Status flags are set by the peripheral
to reflect its current operating conditions. The
program, through the use of 1/O instructions can
examine these status flags and can alter some of
them to change the operating state of the periph-
eral.

The distinction made here between registers and
flags is generally one of information content. A
flag contains a single bit of information, while a
register is made up of a number of bits. Groups
of contiguous bits in a register which convey a
single ""piece" of information are referred to as
""fields". For example, in one of the magnetic
tape controller's registers, bits 13-15 act together
as a control field to select one of the eight possible
tape transports in the subsystem.

The paragraphs below describe only the basic
components of a typical controller. The additional
structure required for a peripheral using the pro-
gram interrupt facility or the data channel is
discussed in the sections describing those facilities.,
What follows is meant only to typify the workings

of a controller; controllers are tailored to the
specific devices they control, so that not all fit

the model given here.

Information Registers

A controller usually contains one or more informa-
tion registers. Using I/O instructions, the pro-
gram can load data and control information into
these registers from the processor's accumulators
and can read data and status information into the
accumulators from them. The three types of in-
formation considered here--data, control, and
status--give rise to three basic types of informa-
tion registers, which are described below.

1/O INSTRUCTION SET

Data Registers

A data register (or data buffer) is used to store
data in the controller as it passes between the de-
vice and the computer. This buffer is needed be-
cause the computer and the device usually operate
at different speeds. Since the operation of nearly
all peripherals involve the transfer of a word or
part of a word of data between the computer and
the device, nearly all peripherals controllers
contain a data buffer. In the case of peripherals
which transfer data under direct program con-
trol, the data buffer is directly accessible to the
program. Data is transferred between the register
in the controller and an accumulator in the central
processor by an I/O instruction. In the case of a
peripheral which transfers data under data chan-
nel control, the data is transferred directly
between the register in the controller and mem-
ory. Data buffers in the controllers which use

the data channel need not be--and usually are not--
accessible to the program.

Control Registers

Control registers allow the program to supply the
controller with information necessary for the
operation of the device, such as drive or transport
numbers, data block sizes, and command specifi-
cation. A unit of control information is called a
""control parameter' . Control parameters typi-
cally allow the program to select one of a number
of peripheral units in a subsystem, the operation
to be performed, and the initial values for flags
and counters in the controller. The program
specifies control parameters to the controller with
an I/0 instruction wherein the desired parameters
are coded into the appropriate fields of the accu-
mulator used in the transfer.

Status Registers

Status registers are used to indicate to the pro-
gram the detailed state of the peripheral. They
consist primarily of status flags, but can also
contain control parameters. The control para-
meters contained in status registers are commonly
those which change during the operation of the
peripheral, and are therefore of importance to the
program which must check on the progress of the
peripheral's operation. For example, a program
transferring consecutive sectors of information

on a disc in a single operation can read the current
sector address and sector count during the opera-
tion in order to determine how far the operation is
from completion. Status flags are set by the con-
troller to indicate error conditions or to notify the
computer of the basic state of the peripheral.

I-6

The classification of controller registers into the
three types described above can only be a general
one. A register may contain more than one type
of information. The most common case of this
occurrence is a register that serves as a control
register when loaded by the program and as a
status register when read by the program. The
disc address/sector counter register mentioned
in the preceding paragraph is an example of such
a combined control and status register.

Busy and Done Flags

The Busy and Done flags are the two fundamental
flags in a controller and they serve a dual purpose.
Together they denote the basic state of the periph-
eral and can be tested by the program to determine
that state. In addition, the program can manipulate
these flags in order to control the operation of the
peripheral. To place the peripheral in operation,
the program sets the Busy flag to 1. The Busy
flag remains in this state for the duration of the
operation, indicating that the peripheral is in use
and should not be disturbed by the program. When
the peripheral completes its operation, the con-
troller sets the Busy flag to 0 and the Done flag to
1 to indicate this fact. The setting of the Done
flag to 1 can be used to trigger a program inter-
rupt. Whether a program interrupt occurs depends
on the state of the interrupt facility. However, no
matter what state the interrupt facility is in, no
interrupt can occur for that peripheral until its
Done flag is set to 1. Therefore, the setting to 1
of the Done flag is defined to '"initiate a program
interrupt request''. At this point, the program
can either start the next operation by setting the
Done flag to 0 and the Busy flag to 1, or it can

idle (clear) the peripheral by setting both flags to
0.

Other Status Flags

For a relatively simple peripheral, the Busy and
Done flags alone may furnish enough status infor-
mation to allow the program to service the periph-
eral adequately. However, a more complex
peripheral will generally require additional status
flags to specify its internal operating conditions
more completely to the program. The difference
between these additional status flags and the Busy
and Done flags lies in the way the program tests
them. The program can test the Busy and Done
flags directly with a single I/O instruction, but
checking any other status flag requires that its
value first be read into an accumulator from the
status register. Each status flag is assigned by
the controller to one of the 16 available bit posi-
tions in the status register. The program may then
perform any test it requires on the status word
after it is read.

Error Flags

Status flags which indicate errors or malfunctions
in the operation of a peripheral are termed "error
flags' . Two types of error flags can be charac-
terized, according to their effect on the operation
of the peripheral when they are set. The first, or
passive, type is merely set by the controller in the
course of the operation when the associated error
occurs. No immediate indication of this type of
error is given to the program, and the operation
is allowed to continue to completion. The second,
or active, type of error flag is set by the control-
ler when the program attempts to start an opera-
tion which is not allowed. In this case, the
operation never begins and the Done flag is set to
1 immediately to notify the program. This type of
error flag is used to prevent a severe and probably
irrecoverable error from occurring. In either
case, the program must respond, error or not,
when it notices that a peripheral is ""done'. It
need only check the appropriate error flag or flags
before assuming that the operation it initiated was
satisfactorily completed.

For example, among its many status flags, the
controller for magnetic tape transports contains
error flags to indicate parity errors and illegal
operations. During a read operation, when a
character is read with incorrect parity, the Parity
Error flag is set to 1. No immediate notification
of the error is given to the program and the read
operation is allowed to finish. The parity error
can be detected at the completion of the operation,
when the program should check for errors. At this
time appropriate action can be taken, such as try-
ing to read the misread section of tape again or
printing an error message on the console terminal.
The Illegal flag, on the other hand, which is set
when an illegal operation is attempted, prevents
the operation from starting. The controller imme-
diately sets both the Done and Illegal flags to 1 to
notify the program. Illegal operations for a mag-
netic tape transport include writing on a tape that
is write-protected and spacing backwards when the
tape is at the beginning of tape marker.

INSTRUCTION FORMAT

The general format of the I/O instructions is
shown below.

DEVICE CODE]
1 1 i 1 i

o 1 1 l AC l OP CODE lCON‘lfROL
i I3
' 112713 4 15

o' I 2 3'4 5 6'7 8 9

10

Bits 0-2 are 011 and identify this as an I/O instruc-
tion, bits 3-4 specify an accumulator, bits 5-7
contain the operation code, bits 8-9 specify a flag
control function or test condition, and bits 10-15
specify the code of the device.

Device Code Field

Bits 10-15 in an I/O instruction select the periph-
eral that is to respond to the instruction. The
instruction format thus allows for 64 device codes,
numbered 0-77g. In all computers, device code 0
is not assigned to any peripheral, and device code
Tg is used to implement a number of specific
processor functions, such as reading the console
switches and controlling the program interrupt
facility. Depending on the computer, a number of
other specific device codes are reserved for pro-
cessor options or features. The remaining device
codes are available for referencing peripherals.
Many of these codes have been assigned by Data
General Corporation to standard peripherals, and
the assembler recognizes convenient mnemonics
for these codes. The list of the standard device
code assignments and their associated mnemonics
is given in Appendix A.

Flag Control Field

The Busy and Done flags are either manipulated or
tested by the control functions or test conditions
specified in bits 8 and 9 of the I/0 instructions.

In those instructions which allow flag manipulation,
bits 8 and 9 are referred to as the F field. The
flag control commands available, along with the
associated mnemonics and bit configurations and
the functions typically performed, are as follows:

F field Control Function
00

01

Mnemonic
(omitted)
S

Command

(none) None

Start Start the periph-
eral by setting the
Busy flag to 1 and

the Done flag to 0.

Clear (idle) the
peripheral by set-
ting both the Busy
and Done flags to
0.

Pulse the control-
ler to achieve a
special effect.
The effect, if any,
depends on the
peripheral.

10 Clear

11 Pulse

I/O INSTRUCTION SET

In the I/0 instruction which allows flag testing,
bits 8 and 9 are referred to as the T field. The
bit configurations, mnemonics, and test conditions
they select are as follows:

T field | Mnemonic | Next instruction is skipped if:
00 BN

Busy flag is 1 (Non-zero)

01 BZ Busy flag is 0 (Zero)
10 DN Done flag is 1 (Non-zero)
11 DZ Done flag is 0 (Zero)

Two important features of the I/0 instruction set
result from the nature of the flag control field.
First, because the flag control field is separate
from the operation code field, a single I/0 instruc-
tion can both transfer information between the con-
troller and the computer and simultaneously control
the operation of the peripheral. Secondly, the use
of the flag control field as a T field allows the
direct testing of a controller's Busy or Done flag
in a single instruction, so that quick decisions
based on the basic state of the peripheral can be
made by the program.

Operation Code Field

The 3-bit operation code field selects one of the
eight I/O instructions. In two of these instructions,
no information transfer is specified; instead, bits
8 and 9 may specify either a control function or a
flag test condition as described above. The re-
maining six instructions involve an information
transfer between the computer and the designated
peripheral controller and may also specify a con-
trol function to be performed after the information
transfer has been completed. The program can,
therefore, access up to six registers in any one
controller, Up to three of these six registers are
output registers which can be loaded by the pro-
gram with either data or control information. The
other three are input registers, from which the
program can read either data or status informa-
tion. It is entirely possible and, in fact, quite
common for two different I/O instructions, one
input and one output, to reference the same reg-
ister in a controller. However, this is not in any
way required by the nature of the 1/0 instruction
set; potentially six different registers in a con-
troller may be accessible to the program.

In order to give names and mnemonics to the I/0
instructions in their general form, the registers in
a peripheral controller which are accessible to the
program are referred to with letter designations.
The three input registers are called the ""A input
buffer', the "B input buffer', and the '"C input
buffer'. Similarly, the three output registers are

Rev, 01

called the ""A output buffer', the "B output buffer",
and the " C output buffer'. Thus, for example, to
read data from a peripheral controller's A input
buffer, a DATA IN A instruction, with mnemonic
DIA, is issued to that peripheral.

The eight operation codes, their associated
mnemonics, and the instructions specified are as
follows:

Operation Code

field Mnemonic Instruction

000 NIO No Input or Output
but perform the flag
control function

specified.

Read Data Into the
computer from the
A input buffer.

Write Data Out from
the computer to the A
output buffer. o

Read Data Into the
computer from the B
input buffer.

Write Data Out from
the computer to the
B output buffer.

Read Data Into the
computer from the
C input buffer.

Write Data Out from
the computer to the
C output buffer.

SKiP the next in-
struction if the test
selected for the
Busy or Done flag
is true.

001 DIA

010 DOA

011 DIB

100 DOB

101 DIC

110 DOC

111 SKP

Accumulator Field

Bits 3 and 4 in an I/0O instruction select one of the
central processor's four accumulators: ACO0, AC1,
AC2, or AC3. In those instructions which involve
an information transfer between the processor and
a peripheral controller, the specified accumulator
either furnishes the information for an output
transfer or receives the information in an input
transfer. In the two I/O instructions which do not
involve an information transfer, the accumulator
field is ignored. The assembler sets bits 3 and

4 in these instructions to 0; however, any bit
combination will do, and no accumulator will ever
be affected by these two instructions.

INSTRUCTIONS

A number of abbreviations and symbols are used
in this manual to aid in defining how an instruction
may be coded in assembly language. Abbrevia-
tions used are as follows:*

ACorac accumulator

Forf flag control command
Tort flag test command
device device code or mnemonic

The following symbols are not coded, rather they
perform these functions:

<> Indicates an optional operand. The
operand enclosed in the brackets (e.g.,
<{£>) may be coded or not, depending on
whether the associated option is desired.

Indicates a specific substitution is re-
quired. Substitute the desired number,
letter or letters, or symbol from the
class, as defined by the abbreviation for
which the substitution is being made.
For example, '"ac' indicates that an
accumulator specifier is required. To
select AC2, code either a '""2" or a
symbol whose value is 2.

When describing the format of a word involved in
an information transfer between the computer and
a controller, the various fields and bits in the word
are labeled with names descriptive of their func-
tions. Bits in the word which are not used by the
controller are shaded. Shaded bits are ignored

on output and set to 0 on input.

NO I/0 TRANSFER

NIO<f> device

[o ! || AC |o) o| F DEVICE CODE J
|]]) I 1 1 l 1 1 1

0 1 2 3 4 5 6'7 8 910 Il 12 13 14 15

The Busy and Done flags in the controller of the
specified device are set according to the function
specified by F. When the assembler encounters
the mnemonic NIO, it sets the AC field bits to 0.
However, these bits are ignored and may have any
value. The contents of all the accumulators are
unchanged.

*New coding aids have been incorporated in some
updated portions of this manual. Where the
newer aids are used, the text specifically refers
the reader to Appendix E, where they are
described.

1-9

1/0 SKIP
SKP<t> device
Lo I [AC | oo T DEVICE CODE T
1 1 1 1 1 1 1 1 1 | 1
01 2 3'4 5 6'7 8 9'10 0 12'13 14 15

Skip the next sequential instruction if the test con-
dition specified by T is true for the specified con-
troller. When the assembler encounters the
mnemonic SKP<t >, it sets the AC field bits to 0.
However, these bits are ignored and may have any
value. The contents of all the accumulators and
the Busy and Done flags for the specified device
remain unchanged.

DATA IN A

DIA<{f> ac,device

OII‘Il A.°|°.°

o 1 2 3 4 5 6 7 8 9

[DEVICE CODE ‘T

T e
o0 1 12 13 14 15

T

The contents of the A input buffer in the specified
controller are placed in the specified AC. After
the data transfer, the controller's Busy and Done
flags are set according to the function specified by
F. The number of information bits transferred
depends on the size of the buffer and the mode of
operation of the peripheral. Bits in the specified
AC that do not receive information are set to 0.

DATA OUT A

DOA<f> ac,device
o I | | AC | o | ol F
| 1 1| | 1

i
T 3

o I 2 3 4 5 6 7 8 9 10 Il 12

lDE\IllCE COPE .
Y13 14 15

The contents of the specified AC are placed into the
A output buffer in the specified controller. After
the data transfer, the controller's Busy and Done
flags are set according to the function specified by
F. The number of information bits loaded into the
buffer depends on the size of the buffer and the
mode of operation of the peripheral. Any unused
bits are ignored by the controller. The contents

of the specified AC remain unchanged.

Rev., 04
/O INSTRUCTION SET

DATA IN B
DIB<f> ac,device

o]

il
9

DEVICE CODE |]
n 12133 14 15

o, 1 1| ac
i) {
o] | 2 3 4 8 10
The contents of the B input buffer in the specified
controller are placed in the specified AC. After
the data transfer, the controller's Busy and Done
flags are set according to the function specified by
F. The number of information bits transferred
depends on the size of the buffer and the mode of
operation of the peripheral. Bits in the AC that

do not receive information are set to 0.

DATA OUT B
DOB<{> ac,device
[o 1+ 1] ac] o o] F DEVICE CODE |
1 1 I 1 1 1 1 1 1 1 H
o' I 2 3 4 5 6 7 8 910 It 12713 14 15

The contents of the specified AC are placed in the
B output buffer in the specified controller. After
the data transfer, the controller's Busy and Done
flags are set according to the function specified by
F. The number of information bits loaded into the
buffer depends on the size of the buffer and the
mode of operation of the peripheral. Any unused
bits are ignored by the controller. The contents of
the specified AC remain unchanged.

DATA IN C

DIC<f> ac,device

OI|II‘A1 |||o‘| F [DEVICE CODE
0 | 2 3' 4 5 6'7 8 S 10 Il 12°13 14 I5

The contents of the C input buffer in the specified
controller are placed in the specified AC. After
the data transfer, the controller's Busy and Done
flags are set according to the function specified by
F. The number of information bits transferred
depends on the size of the buffer and the mode of
operation of the peripheral. Bits in the AC that
do not receive information are set to 0.

I-10

DATA OUT C

DOC<f> ac,device

Lo 1o | AC ‘ I o{ F DEVICE CODE J
% 1 % 1 } 1 1 1 l 1 1

Q | 2 3 4 5 6 7 8 9 0 H 12 13 4 15

The contents of the specified AC are placed in the
C output buffer of the specified controller. After
the data transfer, the controller's Busy and Done
flags are set according to the function specified by
F. The number of information bits loaded into the
buffer depends on the size of the buffer and the
mode of operation of the peripheral. Any unused
bits are ignored by the controller. The contents
of the specified AC remain unchanged.

The single letter mnemonic for the desired con-
trol command is appended to the basic mnemonic.
An NIO instruction alone with any device code is a
"no-op'" (that is, it has no effect). To place the
high speed paper tape reader in operation, an
NIOS 12, or, using the reader's mnemonic, an
NIOS PTR instruction could be executed. Both
of these instructions assemble as 060112g

(0 110 000 001 001 010) and cause the reader to read
one character from the tape into the controller's
data buffer.

To determine when the character is in the buffer
without using the program interrupt we can wait
for either the Busy flag to be set to 0 or the Done
flag to be set to 1. For example, giving

SKPDN PTR
JMP .-1

keeps the processor from proceeding until the
reader controller has set the Done flag to 1,

Once the character has been loaded into the data
buffer, the Done flag is set to 1 and the processor
will continue. The character can be read into the
right half of AC2 by giving

DIA 2,PTR

If another character is to be read the transfer can
be made with a

DIAS 2,PTR

which brings the character into AC2, sets the Done
flag to 0, the Busy flag to 1, and causes the reader
to read the next character. If the data buffer con-
tains the final character to be read from tape,
giving

DIAC 2,PTR

retrieves the character and sets both the Busy and
Done flags to 0, thus idling the reader.

In the remainder of this manual the discussion of
each peripheral treats only the control functions
and the applicable I/O transfer instructions. The
skips apply to all and are the same in all cases,
Giving a data-in instruction that does not apply to
a peripheral (either because the peripheral is
output-only or does not have the buffer specified)
sets all bits of the addressed accumulator to 0 but
the specified flag control function is carried out,
Similarly, a data-out instruction that does not
apply is a no-op except for the specified control
functions. When the device code is undefined or
the addressed peripheral is not in the system, any
data-out or NIO instruction, a SKPBN, or a SKPDN
is a no-op; a SKPBZ or SKPDZ is an unconditional
skip (equivalent to a JMP .+2); and any data-in
instruction simply sets all bits of the specified AC
to 0.

1-11

1O INSTRUCTION SET

This page intentionally left blank

I-12

PROGRAM INTERRUPT FACILITY

INTRODUCTION

When a peripheral completes an operation, the
controller sets its Done flag to 1 to indicate that
program service is required. The program can
test the state of the Done flag repeatedly with
I/0O SKIP instructions to determine when this
occurs. However, continual interrogation of the
Done flag by the program is generally wasteful of
computing time, especially when flag checks need
to be done frequently in order to ensure that ser-
vice is not delayed so long that the peripheral
loses data. The program interrupt facility pro-
vides a peripheral with a convenient means of
notifying the processor that service is required.

All peripherals which use the program interrupt
facility have access to a single direct line to the
processor, called the Interrupt Request Line,
along which their requests for service are com-
municated. An interrupt request can be generated
by a peripheral when the peripheral's Done flag is
set to 1. The processor can respond to, or
*"honor'', an interrupt request by interrupting the
normal flow of program execution and transferring
control to an interrupt handling routine. The pro-
grammer can control which peripherals may re-
quest interrupts and when the processor may start
an interrupt, by manipulating a number of flags
which are distributed among the processor and the
peripherals.

The operation of the program interrupt facility, as
controlled by these flags, is described below.
Following portions of this section detail the instruc-
tions used to control the program interrupt facility,
describe the implementation of a priority interrupt
scheme, offer further suggestions for programming
an interrupt handler, and explain the operation of
the vector instruction, which allows the ECLIPSE
computer to automatically perform much of its
interrupt processing.

I-13

OPERATION

Control Flags

The operation of the program interrupt facility is
governed by the Interrupt On (ION) flag in the
central processor and by the Done and Interrupt
Disable flags in each peripheral which uses the
facility. By manipulating these flags, the program
can choose to disregard interrupt requests alto-
gether, or it can selectively ignore certain periph-
erals.

interrupt On Flag

The major control flag for the program interrupt
facility is the Interrupt On flag in the central pro-
cessor. To enable the interrupt facility the pro-
gram sets ION to 1, allowing the processor to
respond to interrupt requests transmitted to it
along the Interrupt Request Line. Setting ION to

0 disables the entire interrupt facility, causing the
processor to ignore all interrupt requests.

The Interrupt On flag is manipulated by the program
exactly like a Busy flag for the central processor.
A Start command in any I/O instruction directed to
the CPU (device code T7g) sets ION to 1, a Clear
command in such an instruction sets ION to 0.

(ION is also set to 0 at power-up and when the
RESET console switch is pressed.)

PROGRAM INTERRUPT FACILITY

Interrupt Disable Flags

The controller for each peripheral which uses the
program interrupt facility contains an Interrupt
Disable flag which allows the program to disable
interrupts from that peripheral. When a periph-
eral's Interrupt Disable flag is set to 1, the
peripheral is prevented from making an interrupt
request.

The Interrupt Disable flags of all peripherals are
manipulated at once with a single I/O instruction.
This instruction, MASK OUT (MSKO), sets up the
Interrupt Disable flags of all peripherals connected
to the program interrupt facility according to a
mask contained in the accumulator specified by the
instruction. Each peripheral is assigned by its
hardware to a bit position in the mask. (Mask bit
assignments for standard peripherals are given in
Appendix A.) When a MASK OUT instruction is
given, each peripheral's Interrupt Disable flag is
set to the value of the assigned bit of the mask.
Also, at power-up and when the RESET console
switch is pressed, all Interrupt Disable flags are
set to 0,

Interrupt Requests

Interrupt requests by a peripheral are governed by
its Done and Interrupt Disable flags. When a
peripheral completes an operation, it sets its Done
flag to 1, and this action initiates a program inter-
rupt request. If its Interrupt Disable flag is 0, the
request is communicated to the CPU. If the Inter-
rupt Disable flag is 1, the request is not commu-
nicated to the CPU; it is blocked until the Interrupt
Disable flag is set back to 0. If the ION flag is 1,
the processor has to honor the interrupt request
as soon as it is able.

The processor is able to interrupt the sequential
flow of program instructions if all of the following
conditions hold:

1. The processor has just completed an instruc-
tion or a data channel transfer occurring be-
tween two instructions.

2. At least one peripheral is requesting an inter-
rupt.

Interrupts are enabled; that is, ION is 1.

4. No peripheral is waiting for a data channel
transfer; that is, there are no outstanding data
channel requests. The data channel has priority
over program interrupts.

When the processor finishes an instruction it takes
care of all data channel requests before it starts
an interrupt; this includes any additional data
channel requests that are initiated while data
channel transfers are being made. When no more
peripherals are waiting for data channel transfers,
the processor starts an interrupt if ION is 1 and
at least one peripheral is requesting an interrupt.

Processor Response

The processor starts an interrupt by automatically
executing the following sequence:

1. It sets ION to 0 so that no further interrupts
may be started.

2. It stores the contents of the program counter
(which point to the next instruction in the
interrupted program) in location 0, so that a
return to the interrupted program can be made
after the interrupt service routine has finished.

3. It simulates a JMP@1 instruction to transfer
control to the interrupt service routine. Loca-
tion 1 should contain the address of the routine
or the first part of an indirect address chain
that points to the routine.

Servicing An Interrupt

The interrupt service routine {(or handler) should
save the state of the processor, identify which
peripheral requires service, and service the
peripheral.

Saving the state of the processor involves saving
the contents of any accumulators that will be used
in the interrupt service routine and saving the
carry bit if it will be used. The state of the pro-
cessor must be saved so that it may be restored
before the interrupted program is allowed to
resume.

I-14

Peripheral Identification

There are three ways in which the interrupt handler
can identify which peripheral requires service.

1. On the NOVA and ECLIPSE lines of computers,
the interrupt handler can execute a polling rou-
tine. This routine is merely a sequence of 1/0
SKIP instructions which test the states of the
Done flags of all peripherals in use. With this
method peripheral priorities are determined by
the order in which the tests are performed.
Note that the polling technique disregards the
state of the Interrupt Disable flags. Periph-
erals which are masked out will be recognized
if their Done flags are 1, even though these
peripherals could not have caused the interrupt.

2. On the NOVA and ECLIPSE lines of computers,
the interrupt handler can issue an INTERRUPT
ACKNOWLEDGE instruction (INTA). This in-
struction reads the device code of the first
peripheral on the I/O bus that is requesting an
interrupt, into a specified accumulator. Note
that with this method the Interrupt Disable flags
are significant. Peripherals which are masked
out cannot request an interrupt and, therefore,
cannot respond to the INTERRUPT ACKNOWL -
EDGE instruction.

3. On the ECLIPSE line of computers the interrupt
handler can issue a VECTOR instruction (VCT).
This instruction determines which peripheral
requires service in exactly the same way as
the INTERRUPT ACKNOWLEDGE instruction.
However, the device code obtained is not
placed in an accumulator but is used as an in-
dex into a table of addresses. Besides vector-
ing automatically to the correct peripheral
service routine, the VECTOR instruction can
optionally switch stack contexts, save the state
of the processor, and establish a new priority
level. Because the VECTOR instruction is
available only on the ECLIPSE computer, and
because its operation is relatively complex, it
is described later in a section of its own.

Peripheral Service Routine

After determining which peripheral requires ser-
vice, the interrupt handler generally transfers
control to a peripheral service routine. This
routine performs the information transfer to or
from that peripheral (if required) and either starts
the peripheral on a new operation or idles the
peripheral if no more operations are to be per-
formed at this time.

Dismissing An interrupt

When all service for the peripheral has been com-
pleted, either the peripheral service routine or
the main interrupt handler should perform the
following sequence to dismiss the interrupt.

I-15

1. Set the peripheral's Done flag to 0 to dismiss
the interrupt request which was just honored.
If this is not done, the undismissed interrupt
request will cause another interrupt--this time
incorrectly--as soon as the interrupt handler
finishes and attempts to return control to the
interrupted program.

2. Restore the pre-interrupt states of the accu-
mulators and the carry bit.

3. Set the Interrupt On flag to 1 to enable inter-
rupts again.

4, Jump back to the interrupted program.
(Usually a JMP @O0 instruction is given.)

The instruction that enables interrupts (usually
INTEN) sets the Interrupt On flag to 1, but the
processor does not recognize that the state of the
ION flag has changed to 1 until the next instruction
begins. Thus, after the instruction that turns
interrupts back on, the processor always executes
one more instruction (assumed to be the return to
the interrupted program) before another interrupt
can start. The program must give this final return
instruction immediately after enabling interrupts
in order to ensure that no waiting interrupt can
overwrite the contents of location 0 before they
are used to return control to the interrupted pro-
gram.

The following diagram shows how normal program
flow is altered during a program interrupt. The
interrupt handler is shaded to indicate that this
block of instructions is not interruptable since the
processor sets the ION flag to 0 to disable further
interrupts when the interrupt occurred. Interrupts
are not enabled again until the interrupt handler
executes its INTERRUPT ENABLE instruction just
prior to returning control to the interrupted pro-
gram,

MAIN
PROGRAM
INTERRUPT INTERRUPT
OCCURS HANDLER
[PERIPHERAL

P

R

0

¢ i CRo

B SERVICE

A

M

E

X

E

C

U

T

|

0

N

RETURN
~ FROM
U INTERRUPT

D6-00647

Rev. 01
PROGRAM INTERRUPT FACILITY

INSTRUCTIONS

The instructions which control the program inter-
rupt facility use special device code T7g
(mnemonic CPU). When this device code is used,
bits 8 and 9 of the skip instructions test the state
of the Interrupt On flag; in the other instructions
these bits turn interrupts on or off by setting ION
to 1 (Start command) or 0 (Clear command).

INTERRUPT ENABLE

INTEN

NIOS CPU

Lo ! || AC |o o oflo 1ttt 1 1 v ||
lI 1 : 1 % | 1 1 { 1 1

0 | 2 3 4 S [7 8 9 o it 1213 14 |5

Set the Interrupt On flag to 1 to allow the processor
to respond to interrupt requests. If the Interrupt
On flag actually changes state (from 0 to 1), the
processor will execute one more instruction before
it can start an interrupt. On the ECLIPSE com-
puter, the processor will execute one more in-
struction before starting an interrupt even if the
Interrupt On flag was already 1. However, if that
instruction is one of those that is interruptable,
then an interrupt can occur as soon as the instruc-
tion begins to execute. The assembler recognizes
the mnemonic INTEN as equivalent to NIOS CPU.

INTERRUPT DISABLE

INTDS

NIOC CPU

0 1 ll AC |o o o[lr ofr 1 1 1 1 l]
| 1 1 1 1 1 1 1] 1. 1

o'l 2 3"4 5 6€'7 8 910 Il 1213 14 15

Set the Interrupt On flag to 0 to prevent the pro-
cessor from responding to interrupt requests. The
assembler recognizes the mnemonic INTDS as
equivalent to NIOC CPU.

SKIP IF INTERRUPTS ENABLED

SKPBN CPU
|| AC ||‘|
2 3‘4

o 1

{ 1
T

0 !

110 O [I [N
1 1] 1 1 1
8 9 10 Il 12°13 14 15

6 ' 7

Skip the next sequential instruction if the Interrupt
On flag is 1.

I-16

SKIP IF INTERRUPTS DISABLED

SKPBZ CPU

o | 1] AC || voalo ol e
! | { ! Il 1 { H | ! 1

O | 2 3'4 5 6 7 8 9 10 {l 1213 14 15

Skip the next sequential instruction if the Interrupt
On flag is 0.

MASK OUT

MSKO ac

DOB<£> 3_.__(_:,CPU
|o' |

L
o I

a0l
2 3 4 5 6 7 8

oo |

L
10 11 12° 13 14 15

9

Set the Interrupt Disable flags in all peripherals
according to the mask contained in the specified
AC. (A 1in a mask bit sets the flags in all periph-
erals assigned to that bit to 1, a 0 sets them to 0.)
After the Interrupt Disable flags are set, the
Interrupt On flag is set according to the function
specified by F. The contents of the specified AC
remain unchanged. Mask bit assignments for
standard peripherals are given in Appendix A.

The assembler recognizes the instruction

MSKO ac as equivalent to DOB ac,CPU.

INTERRUPT ACKNOWLEDGE
INTA ac

DIB<{> ac,CPU
lOlIIII AC |°1' I

1
o' I 2 34 5 6'7

F [
1 1 1 1 1 1
910 Il 12 13 14 I5

8

The device code of that peripheral requesting an
interrupt which is closest to the processor along
the I/O bus is placed in bits 10-15 of the specified
AC. Bits 0-9 are set to 0. After the data trans-
fer, the Interrupt On flag is set according to the
function specified by F. If no peripheral is re-
questing an interrupt, the specified AC is set to
0. The assembler recognizes the instruction
INTA ac as equivalent to DIB ac, CPU.

1/0 RESET
IORST

DIC<f> ac,CPU

0 | || AC || o | F Lo 0 1 11
1 Il 1 1 1 1 1 i 1 1
o'l 2 3 4 5 6

L
7 8 910 Il 1213 14 15

Reset all peripherals connected to the I/O bus: set
their Busy, Done, and Interrupt Disable flags to O
and, depending on the peripheral, perform any
other required initialization. After the peripherals'
flags are altered, the Interrupt On flag is set
according to the function specified by F. The
assembler recognizes the mnemonic IORST as
equivalent to DICC 0,CPU--that is, as the in-
struction defined here with F set to 10.

If the mnemonic DIC is used to perform this func -
tion, an accumulator must be coded to avoid as-~
sembly errors. Regardless of how the instruction
is coded, during execution the AC field is ignored
and the contents of the specified AC remain un-
changed. At power-up and when the RESET con-
sole switch is pressed, the processor performs the
equivalent of an IORST instruction.

The assembler recognizes a number of convenient
mnemonics for instructions that control the pro-
gram interrupt.

Mnemonic Octal

Mnemonic Instruction Equivalent Equivalent
INTEN INTERRUPT ENABLE NIOS CPU 060177
INTDS INTERRUPT DISABLE NIOC CPU 060277

MSKO ac| MASK OUT DOB ac,CPU
INTA ac | INTERRUPT ACKNOWLEDGE | DIB ac,CPU

IORST = | 1/0 RESET DICC 0,CPU

062077
061477
062677

To set up the Interrupt Disable flags according to
the mask contained in AC2, give

MSKO . 2
or
DOB 2,CPU

However, there is one important difference be-
tween these special mnemonics and the standard
ones: mnemonics for enabling and disabling inter-
rupts cannot be appended to them. Thus, to set
the Interrupt On flag to 0 while performing a
MASK OUT instruction using AC2 give

DOBC 2,CPU

Note that use of the mnemonic IORST sets the
Interrupt On flag to 0. To set the flag to 1 while
resetting the peripherals give

DICS 0,CPU

PRIORITY INTERRUPTS

If the Interrupt On flag remains 0 throughout the
interrupt service routine, the routine cannot be
interrupted, and there is only one level of periph-
eral priority. All peripherals that have not been
disabled by the program are, for the most part,
equally able to request interrupts and receive
interrupt service. Only when two or more periph-
erals are requesting an interrupt at exactly the
same time is a priority distinction made. When
this happens, priority is determined either by the
order in which I/O SKIP instructions are given or,
if the INTERRUPT ACKNOWLEDGE or VECTOR
instruction is used, by the order of peripherals
along the I/O bus. In a system with peripherals
of widely differing speeds and/or service require-
ments, a more extensive priority structure may
be required. The program interrupt facility hard-
ware and instructions allow the program to imple-
ment up to 16 interrupt priority levels.

For example, suppose that a card reader and a
Teletype® are being operated at the same time.
While a card is being read, an interrupt is re-
quested as each new column of data is available,
and the program must read this data within 430
microseconds, typically, before it is overwritten in
the Data Buffer by the data from the next column.
If the Teletype service routine takes 300 micro-
seconds, card reader service will never be delayed
longer than this, and a single -level program inter-
rupt scheme will suffice. However, this interrupt
scheme will not work if the Teletype service rou-
tine takes 600 microseconds, since a card reader
interrupt request initiated soon after Teletype ser-
vice is begun will not be honored in time, and a
column of data will be lost. In order to avoid los-
ing data, the program interrupt scheme used must
allow the card reader to interrupt the lengthy
Teletype service routine. This involves creating
a two-level priority structure and assigning the
card reader to the higher priority level.

In general, a multiple-level priority interrupt
scheme is used to allow higher-priority peripherals
to interrupt the service routines of lower-priority
peripherals. A hierarchy of priority levels can be
established through program manipulation of the
Interrupt Disable flags of all peripherals in the
system. When the interrupt request from a periph-
eral of a certain priority is honored, the interrupt
handler sets up the new priority level by establish-
ing new values for all peripherals' Interrupt Disable
flags according to an appropriate '"Interrupt Prior-
ity Mask' used with the MASK OUT instruction.
Peripherals whose Interrupt Disable flags are set
to 1 by the corresponding bit of this priority mask
are ""masked out", or disabled, and are thereby

regarded as being of lower priority than the periph-

eral being serviced. Peripherals which are not
masked out assume a higher priority than the

Teletype® is a registered trademark of Teletype Corporation, Skokie, Illinois. All references to tele-

types in this manual shall apply to this mark.

I-17

PROGRAM INTERRUPT FACILITY

peripheral being serviced. Before proceeding with
the peripheral service routine, the Interrupt On
flag is set to 1 so that the higher-priority periph-
erals may interrupt the current service routine.

Interrupt Priority Mask

The bit of the priority mask that governs the Inter-
rupt Disable flag for a given peripheral is assigned
to that peripheral by the hardware and cannot be
changed by the program. Although lower-speed
devices are generally assigned to higher-numbered
mask bits, no implicit priority ordering is in-
tended. The manner in which these priority levels
are ordered is completely up to the programmer.
By means of the priority mask the program can
establish any desired priority structure, with one
limitation: in the cases in which two or more
peripherals are assigned to the same bit of the
priority mask, these peripherals are constrained
to be at the same priority level. When a periph-
eral causes an interrupt, a decision must be made
whether to place all other peripherals which share
the same mask bit with the interrupting peripheral
at a higher or lower priority level. If a decision
is made to mask out all peripherals which share
that priority mask bit, the interrupting peripheral
is also masked out.

Priority Interrupt Handler

A priority interrupt handler differs from a single-
level interrupt handler in several ways. The
handler must be ""re-entrant'. This means that if
a peripheral service routine is interrupted by an-
other, higher priority peripheral, no information
required by the handler to restore the state of the
machine, is lost. The two items of information
which should be saved, in addition to those saved
by a single-level interrupt handler, are the return
address (the contents of location 0) and the current
priority mask. This information must be stored
in different locations each time the interrupt
handler is entered at a higher level. Doing this
ensures that the necessary return information
belonging to an earlier interrupt is not overwritten
by a higher level interrupt. A common method of
storing return information for a re-entrant inter-
rupt handler is through the use of push-down
stacks.

The interrupt handler (including the peripheral
service routines) for a multi-level priority scheme
should perform the following tasks:

1. Save the state of the processor, that is, the
contents of the accumulators, the carry bit,
location 0, and the current priority mask.

2. Identify the peripheral that requested the
interrupt.

3. Transfer control to the service routine for
that peripheral.

4. Establish the new priority mask with a MASK
OUT instruction for that peripheral's service
routine and store it in memory at the location
reserved for the current priority mask for
that level of interrupt.

5. Enable interrupts. Now, any peripheral not
masked out can interrupt this service routine.

6. Service the peripheral that requested the
interrupt.

7. Disable interrupts in preparation for dismis-
sal of this interrupt level, so that no inter-
rupts will occur during the transition to the
next lower level.

8. Restore the state of the processor, including
the former contents of the accumulators and
the carry bit and reinstitute the pre-interrupt
priority mask with a MASK OUT instruction.

9. Enable interrupts.

10. Transfer control to the return address which
was saved from location 0.

The diagram below is a simplified representation
of program flow in a priority interrupt environ-
ment. Shaded areas indicate non-interruptable
sections of instructions. Additional higher-

priority interrupts could increase the depth of

interrupts still further.

MAIN
PROGRAM
FIRST INTERRUPT HANDLER
INTERRUPT
OCCURS
HIGHER
PRIORITY
INTERRUPT
OCCURS
P
R
0
G
R
A
M
&
£ | SERVICE
¢ FIRST
v PERIPHERAL {
4 | SERVICE |
N 1 | SECOND |
l 7 PERIPHERAL

DG6-00648

I-18

The Vector Instruction

The ECLIPSE line of computers incorporates an
instruction which greatly reduces the burden of
programming a priority interrupt system. Since
this instruction is available only on the ECLIPSE
line of computers, it is described separately below.
In effect, the VECTOR instruction (VCT) can be
used to perform the first five tasks listed above for
the multi-level priority interrupt handler.

VECTOR ON INTERRUPTING DEVICE CODE

VCT <@ >displacement

[o 1 1,0 00 1 &t 1 bttt o]

% 1 1 % 1 1 : 1 i : 1 1 } 1 1

0O I 2 3 4 5 6'7 B8 9 10 1l 1213 14 I5

[@ DISPLACEMENT |
1 1 i i 1 1 1 1 1 1

o'l 2 3 4 5 6°'7 8 9 10 (I 12 13 14 15

This instruction provides a fast and efficient
method for transferring control from the main
1/0 interrupt handler to the correct interrupt ser-
vice routine for the interrupting device. Bit 0 of
the second word of the instruction is the ' stack
change bit'" and bits 1-15 contain the address of a
64-word vector table. Vector table entries are
one word in length and consist of a '"direct” bit

in bit 0 followed by an address in bits 1-15.

An INTERRUPT ACKNOWLEDGE instruction is
performed. The device code returned is added to
the address of the vector table and the vector table
entry at that address is fetched. If the direct bit
in the fetched vector table entry is 0, the address
in bits 1-15 is taken to be the address of the device
handler routine for the interrupting device and
control is immediately transferred there by placing
the address in the program counter.

If the direct bit is 1, the address in bits 1-15 of
the vector table entry is taken to be the address of
the device control table (DCT) for the interrupting

I-19

device. At this point, the stack change bit is
examined. If the stack change bit is 0, no stack
change is performed. If the stack change bit is 1,
a new stack is created by placing the contents of
memory location 6 in the stack limit, and the con-
tents of memory location 7 in the stack fault. The
previous contents of memory locations 40g-43g
are then pushed onto this new stack.

Device control tables must consist of at least two
words. The first word of a DCT consists of a
"push bit" in bit 0 followed by the address of the
device handler routine for the interrupting device
in bits 1-15. The second word of a DCT contains

a mask that will be used to construct the new inter-
rupt priority mask. Succeeding words in a DCT
may contain information that is to be used by the
device interrupt handler.

After the stack change procedure is performed, the
first word of the DCT is fetched and inspected. If
the push bit is 1, a standard return block is pushed
onto the stack with bits 1-15 of physical location 0
placed in bits 1-15 of the last word pushed. If the
push bit is 0, no return block is pushed.

Following this procedure, the address of the DCT
is placed in bits 1-15 of AC2 and bit 0 of AC2 is
set to 0.

Next, the current interrupt priority mask is
pushed on the stack. The contents of the second
word of DCT are logically OR'd with the current
interrupt priority mask and the result is placed in
both ACO and memory location 5. This constructs
the new interrupt priority mask and places it in
ACO and the save location for the mask. A

DOBS 0,CPU instruction is now performed. This
is a MASK OUT instruction that also enables the
interrupt system.

After a new interrupt priority mask is established
and the interrupt system enabled, control is trans-
ferred to the device handler by placing bits 1-15 of
the first word of the DCT in the program counter.

Rev, 01
PROGRAM INTERRUPT FACILITY

START OF
VCT INSTRUCTION

FETCH THE SECOND
WORD OF THE VCT
INSTRUCTION. BIT
0 IS THE STACK
CHANGE BIT. BITS
1-15 CONTAIN THE
ADDRESS OF THE
BEGINNING OF THE
VECTOR TABLE

{

PERFORM
INTA

!

ADD THE CODE
RETURNED FROM

INTA TO THE AD-
DRESS OF THE VECTOR
TABLE AND FETCH THE
WORD AT THAT LOCA-
TION. BIT 0 IS THE
"DIRECT BIT”

YES

DIRECT

BIT = 02

BITS 1-15 OF

THE FETCHED
VECTOR TABLE
ENTRY CONTAINS
THE ADDRESS OF
THE DCT

BITS 1-15 OF THE
FETCHED VECTOR
TABLE ENTRY CON-
TAIN THE ADDRESS
OF THE DEVICE
INTERRUPT ROUTINE.

!

FETCH THE FIRST WORD
OF THE DCT. BIT 01S
THE " PUSH BIT". BITS
1-15 CONTAIN THE
ADDRESS OF THE DEVICE
INTERRUPT ROUTINE.

NO

YES

PUSH STANDARD
RETURN BLOCK.

BITS 1-15 OF

LAST WORD PUSHED
CONTAIN BITS 1-15

OF PHYSICAL LOCATION
0.

|

SAVE LOCATIONS

TRANSFER CONTROL

TO THE DEVICE
INTERRUPT ROUTINE

BY PLACING BITS

1-15 OF THE FETCHED
VECTOR TABLE ENTRY

IN THE PROGRAM COUNTER

40-434

'

PLACE CONTENTS OF
LOCATION 4 IN

STACK POINTER.
PLACE CONTENTS OF
LOCATION 6 IN

STACK LIMIT.

PLACE CONTENTS OF
LOCATION 7IN
STACK FAULT.
NOTE: FRAME
POINTER IS DESTROYED
AND THE CONTENTS
ARE UNPREDICTABLE

b |

PLACE THE
ADDRESS OF THE
DCT IN AC2.

'

PUSH THE CURRENT
INTERRUPT MASK
(LOCATION 5) ONTO
THE STACK.

'

PLACE THE LOGICAL
OR OF THE CURRENT
INTERRUPT MASK AND
THE SECOND WORD
OF THE DCT IN ACO.

'

PLACE THE
CONTENTS OF ACO
IN THE CURRENT
INTERRUPT MASK
(LOCATION 5).

!

DO A MASK OUT
FROM ACO AND
ENABLE INTERRUPTS
(DOBS 0, CPU).

1

PLACE ADDRESS

OF DEVICE INTERRUPT
ROUTINE IN

PROGRAM COUNTER.

!

PUSH OLD CONTENTS
OF LOCATIONS
(40g-43)

A I A
06- 01133

CONTINUE SEQUENTIAL
OPERATION WITH THE

WORD ADDRESSED CONTROL TO

BY THE PROGRAM STACK FAULT
COUNTER ROUTINE

TRANSFER

. j
T

END OF
VCT INSTRUCTION

Rev. 01

I-20

Use of the Vector Instruction

The VECTOR ON INTERRUPTING DEVICE CODE
instruction is an extremely powerful instruction.
Because of the impact of interrupt latency on over-
all system performance, and the impact of the
VECTOR instruction on interrupt latency, this in-
struction should be well understood before it is
used.

The VECTOR instruction can operate in any one of
five modes. These modes are called mode A,
mode B, mode C, mode D, and mode E. In gen-
eral, as one goes through the modes, from A to E,
the instruction performs more work, giving the
user more power, but also takes more time to
execute,

For all modes, the VECTOR instruction uses bits
1-15 of the second word to address the vector
table. An INTERRUPT ACKNOWLEDGE instruc-
tion is performed and the device code received is
added to the address of the vector table and the
word at that location is fetched. At this point, the
mode selection process begins.

Which mode is used for execution is a function of
the direct bit in the vector table entry, the stack
change bit in the second word of the VECTOR in-
struction and the push bit in the first word of the
DCT. The table below gives the relationship.

DIRECT STACK CHANGE PUSH MODE
0 X X A
1 0 0 B
1 0 1 C
1 1 0 D
1 1 1 E

Note: X = Don't care

For mode A, the state of the stack change and push
bits don't matter because they are never checked.

The uses of the five modes are described below.

Mode A is used when no time can be wasted in get-
ting to the interrupt handler for a device. A device
requiring mode A service would typically be a non-
buffered device with a very small latency time.
Alternatively, a real time process that must receive
control immediately after an event could be ser-
viced using mode A, The programmer pays for

the speed realized through mode A by giving up the
state saving and priority masking features of the
other modes.

Modes B, C, D, and E are used to implement a
priority interrupt structure. They all build a new
priority mask and save the old priority mask be-
fore issuing a MASK OUT instruction that enables
the interrupt system. These modes differ in the
amount of time and work that they devote to saving
the state of the machine.

I-21

In a priority system, there are typically two types
of processes: those that operate at '"base' level,
and those that do not. Base level is defined as
operating with all levels of interrupt enabled and
no interrupt processing in progress. Non-base
level is defined as operating with some interrupt
processing in progress. In general, those pro-
cesses that operate at base level are user pro-
grams. Those processes that operate at non-base
level are the various interrupt handlers in the
system.

One of the first things that the supervisor program
should do when it receives an interrupt while a pro-
cess is operating at base level is to change the
stack environment. Two reasons lead to this con-
clusion. The supervisor has no control over
whether or not the user has defined a stack by
placing meaningful information in the stack control
words. Additionally, even if the user has initialized
a stack, the supervisor has no control over the size
of the stack. If the user has defined a stack, but

is very close to his stack limit, it would not be
acceptable for a supervisor interrupt routine to fill
the user's stack to overflowing. By using either
mode D or E, the VECTOR instruction will change
the stack environment and initialize a stack over
which the supervisor has full control. At the same
time, the VECTOR instruction will save the stack
environment of the user so that it may be restored
before control is returned to the user.

If an interrupt handler is already processing when
another interrupt is received, then the stack en-
vironment has already been changed by the inter-
rupt that occurred at base level and should not be
changed again. For interrupts that occur at non-
base level, modes B and C of the VECTOR instruc-
tion can be used.

The difference between modes D and E is the same
as the difference between modes B and C: modes
B and D do not push a return block onto the stack.

While this saves a little bit of time over modes C
and E, it makes returning control to the interrupted
program somewhat more complicated.

All modes of the VECTOR instruction can be com-
bined in one vector table. Devices that require
mode A service will have bit 0 set to 0 in their
vector table entry. The other devices will have
bit 0 set to 1 in their vector table entries, and
control their modes of service by the setting of the
push bit in their DCT's.

The POP BLOCK instruction (POPB) can be used to
return from an interrupt handler which does not
change the context of the stack. The RESTORE in-
struction (RSTR) can be used to return when the
stack context is changed.

Rev. 01
PROGRAM INTERRUPT FACILITY

This page intentionally left blank

I-22

DATA CHANNEL FACILITY

INTRODUCTION

Peripherals which need to transfer large blocks of
data quickly generally accomplish their data trans-
fers via the data channel facility. The actual data
channel transfers do not disturb the state of the
processor since the data is transferred directly
between registers in the controller and memory.
This means that the amount of program overhead
in the form of executing I/O instructions and load-
ing or storing data is greatly reduced. The time
required for program execution is lengthened how-
ever, since the processor pauses, as soon as it is
able, each time a word is to be transferred; the
transfer then occurs and the processor continues.
The program need only set up the peripheral for
the transfer and can then perform other, unrelated
tasks.

Features

The data channel facilities in the original NOVA,
NOVA 1200 series, and the ECLIPSE line of com-
puters all provide a single speed for data channel
operation. The SUPERNOVA® series, NOVA 800
series, and NOVA 2 series computers all can
operate the data channel at two different speeds:
standard and high speed. In addition to merely
transferring data, certain arithmetic operations
can be performed by the data channel in some com-
puters. All the NOVA line computers can have the
contents of any memory location incremented by 1
each time a controller requests that operation.
The NOVA and SUPERNOVA computers also allow
a controller to add a word to the previous contents
of any memory location,

In both types of arithmetic operation, the com-
puter sends the results back to the controller and,

if the operation increased the contents of the mem-
ory location to more than 216-1, it sends an over-
flow signal.

The data channel allows many peripherals to be
active at the same time, providing access to mem-
ory to individual controllers on demand. Periph-
erals which use the data channel operate under a
priority structure imposed on them by the channel.
In cases where more than one controller requests
access to the data channel at the same time,
priority is given to that controller which is closest
to the processor on the I/O bus.

A table in Appendix D includes the maximum
transfer rates for all combinations of channel
speed and type of transfer.

CONTROLLER STRUCTURE

Understanding the operation of the data channel
requires a knowledge of the structure of the con-
‘trollers which use it. The controllers usually
contain the normal Busy and Done flags, status,
control, and information registers, and the pro-
gram interrupt components. Additional compo-
nents are added to handle the functions necessary
to operate the data channel. Some of these com-
ponents, generally available to the program, are
in the form of additional control and status reg-
isters.

The two main registers usually added are the Word
Counter and the Memory Address Counter. The
Word Counter is used by the program to specify the
size of the block of data to be transferred (number
of words). The Memory Address Counter is used
to specify the address in memory which is used in
the data transfer.

Rev. 01
DATA CHANNEL FACILITY

I-23

Word Counter

The Word Counter is loaded, by the program, with
the two's complement of the number of words in the
block. Each time a word is transferred, the con-
troller automatically increments the counter by 1.
When the counter overflows, the controller termi-
nates data channel transfers.

The size of the Word Counter varies from periph-
eral to peripheral, depending on the block size
associated with the peripheral. Typical sizes of
the Word Counter are 12 and 16 bits, allowing for
up to 4096 -word blocks and 65, 536-word blocks,
respectively. Although the Word Counter specifies
the negative of the desired block size, the most
significant bit of the register need not be a 1--it

is not a sign bit for the number. No sign bit is
necessary because the word count is treated as
negative by the controller, by virtue of being in-
cremented instead of decremented. Thus, a word
count of 0 is valid; in fact, it specifies the largest
possible block size. The table below further illus-
trates the correspondence between the desired
word count and the value which must be loaded into
a 12-bit or 16-bit Word Counter.

(negative) word count | 16-bit value | 12-bit value

(decimal) (octal) (octal)
-1 177777 NN
-2 177776 77176
-8 177770 7770
-100 177634 7634
-20417 174001 4001
-2048 174000 4000
-2049 173777 3717
-4095 170001 0001
-4096 170000 0000
-4097 1677717
-8192 160000
-32768 100000
-65535 000001
-65536 000000

Memory Address Counter

The Memory Address Counter always contains the
address in memory which is to be used by the con-
troller for the next data transfer. It is loaded, by
the program, with the address of the first word in
the block to be transferred. During each transfer,
the controller increments the Memory Address
Counter by 1. Therefore, successive transfers
are to or from consecutive memory locations.

Rev.06

1-24

TRANSFER SEQUENCE

The actual data channel transfer sequence is a
two-way communication between processor and
controller and proceeds as follows. When a
peripheral has a word of data ready to be trans-
ferred to memory or wants to receive a word from
memory, it issues a data channel request to the
processor. The processor pauses as soon as it is
able, and begins the data channel cycle by acknowl-
edging the peripheral's data channel request. The
acknowledgment signal dismisses the peripheral's
data channel request and causes the peripheral to
send back to the processor the address of the mem-
ory location involved in the transfer. Following
the receipt of the address, the data itself is trans-
ferred in the appropriate direction.

At the completion of each data transfer the pro-
cessor/controller interaction is over. The con-
troller carries out any tasks necessary to complete
the data transfer, such as transferring the data to
the device itself for an output operation. The pro-
cessor starts another data channel transfer if any
data channel requests are pending, starts a pro-
gram interrupt if one is being requested and there
are no data channel requests, or resumes program
execution.

The controller increments both the Memory Ad-
dress Counter and the Word Counter during the
transfer. If the word count becomes 0, the con-
troller terminates further transfers, sets the

Busy flag to 0, the Done flag to 1, and initiates a
program interrupt request. If the Word Counter
has not yet overflowed, the peripheral continues its
operation, issuing another data channel request
when it is ready for the next transfer.

DATA CHANNEL MAP SELECTION

Data channel MAP selection is performed only by
certain peripheral controllers in Data General
computer systems that contain more than one data
channel MAP, i.e., the NOVA 3 and ECLIPSE
S/220 and S/230 series computers. In these
series of computers, data channel map selection
occurs at DCHA time (refer to the Interface
Designer' s Reference, DGC 015-000031). If the
data channel facility is enabled at DCHA time,
DATAO selects one of two data channel maps. If
DATAOQ is asserted at DCHA time, DCHA MAP B
is selected. If DATAO is not asserted at DCHA
time, DCH MAP A is selected.

In this manual, a controller that performs data
channel MAP selection is specifically identified as
such in its controller introduction and in its
controller programming summary.

Processor Pauses

The processor can pause for a data channel trans-
fer only at certain, well-defined times, depending
on the model of processor and, in the SUPERNOVA
computer, on the channel speed used by the periph-
eral requesting the transfer. For the NOVA,
NOVA 1200 series, and the standard channel on
SUPERNOVA computers, data channel transfers,
like program interrupts, can only occur between
instructions. High-speed data channel requests

on the SUPERNOVA computer, and all requests

on the NOVA 800 series, NOVA 2 series, and
ECLIPSE line of computers can break into pro-
gram execution at certain other points in most in-
structions (I/O instructions are included in those
that cannot be broken into.)

Priorities

In terms of priorities, program execution has
priority over the data channel except at certain
points in the processor's operation, at which times
the data channel has absolute priority (over not
only normal program execution but also over any
pending program interrupt requests). At these
certain points, the processor will handle all exist-
ing data channel requests, including those which
are generated while data channel transfers are in
progress, before starting a program interrupt or
resuming normal instruction execution. Thus, if
data channel requests are being generated by a
number of peripherals as fast as or faster than the
processor can handle them, all processing time
will be spent handling data channel transfers, and
program execution will stop until all the data
channel transfers are made. However, when the
data channel is being used at less than its maxi-
mum rate, processing time is shared between the
data channel, which receives as much as it needs,
and the program, which uses the rest.

When the processor pauses to honor a data chan-
nel request and more than one peripheral is re-
questing a data channel transfer, priority is given
to the peripheral which is closest to the processor
on the I/O bus. Since all peripherals operating
with the high-speed data channel must be grouped
together at the beginning of the bus, all requests
from high-speed controllers will be honored be -
fore any from those which operate at standard
speed. To use the high-speed data channel, the
controller for a peripheral must be mounted inside
the mainframe of the computer and must be
designed to operate within the high-speed data chan-
nel time constraints. (Refer to the Interface
Manual, DGC 015-000031.) A computer that has
the two-speed capability is shipped with the high
speed enabled for all controllers mounted inside
the mainframe. (Controllers in an expansion
chassis are constrained to operate at standard
speed.)

I-25

PROGRAMMING

Programming a peripheral for a data channel block
transfer typically involves the following steps:

1. The peripheral's status is checked, usually
by testing the Busy flag and/or reading a
status word and checking one or more error
or ready bits. If an error has occurred, the
program should take appropriate action., If
no error has occurred but the peripheral is
not yet ready, the program should wait for the
peripheral to complete its operation. When
the peripheral is ready, the program may
proceed.

2. The data block in the device is located. This
usually involves giving a peripheral ""address"
by specifying a unit number, channel number,
sector number, or the like.

3. The data block in memory is located by loading
the Memory Address Counter with the address
of the first word of the block.

4, The size of the data blocks is specified by
loading the proper value into the Word Counter.

5. The type of transfer is specified and the
operation is initiated. If the peripheral is
capable of several different operations, speci-
fying the type of transfer usually involves
loading a control register in the controller.
The operation itself is usually initiated by one
of the I/0 control functions: Start, or Pulse.

Setting up and initiating the data channel operation
is the major part of programming a data channel
block transfer. However, if any errors could
have occurred during the operation, the program
should check for these errors when the operation
is complete and take appropriate action if one or
more have occurred.

Rev.0l
DATA CHANNEL FACILITY

This page intentionally left blank

I-26

TIMING

INTRODUCTION

On large systems which depend heavily on input/
output, both the direct program control and data
channel facilities can be badly overloaded. This
overloading means that certain peripherals are
seriously compromised because they lose data or
perform poorly, since the system cannot respond
to them in time.

This section explains how a system can be over-
loaded and what steps can be taken to minimize the
detrimental effects.

DIRECT PROGRAM CONTROL

Nearly all peripherals operating under direct pro-
gram control request program service by setting
their Done flags to 1. Whether the CPU deter-
mines that the Done flag is set to 1 by repeatedly
checking it or by responding to interrupt requests,
there may be a significant delay between the time
the peripheral requests program service and when
the CPU carries out that service. This delay is
called "programmed I/O latency'.

When the program interrupt facility is not used,
this programmed I/O latency has two components
which can be calculated from the tables in Appendix
D.

1. The interval between the time the Done flag is
set to 1 by the peripheral and the time the flag
is checked by the CPU.

2. The time required by the peripheral service
routine to transfer data to/from the peripheral
and set the Done flag to 0 (by idling the periph-
eral or instructing it to begin a new operation.

The first component can be diminished by perform-
ing frequent checks on the Done flag; the second
can be diminished by writing an efficient periph-
eral service routine.

I-27

When the program interrupt facility is used, this
programmed I/O latency has at least four compo-
nents:

1. The time from the setting of the Done flag to
1, to the end of the instruction being executed
by the CPU.

2. The time the interrupt facility needs to store
the program counter in location 0 and simulate
a JMP @1 instruction.

3. The time required by the interrupt handler to
identify the peripheral and transfer control to
the service routine.

4. The time required by the service routine to
transfer data to/from the peripheral and set
the Done flag to 0.

The programmed I/0 latency may be extended by
three other components:

5. The time when CPU operation is suspended
because data channel transfers are in progress
(see following section).

6. The time during which the CPU does not re-
spond to the peripheral's interrupt request
because the interrupt system is disabled.

(For example, during the servicing of an inter-
rupt from another peripheral.)

7. The time the peripheral's Interrupt Disable
flag is set to 1 during the servicing of an
interrupt of a higher level peripheral.

The first component is determined by the longest
non-interruptable instruction that the CPU can
execute. On the NOVA line computers, this is
usually a few microseconds (unless long indirect
address chains are used in several processors);
on the ECLIPSE line of computers it can be consid- |
erably longer due to the presence of the WCS fea-
ture which allows the programmer to code long
instructions which do not allow program interrupts
to occur during their execution.

Rev. 01
TIMING

The second component is also machine dependent;

in general it is approximately two or three times

as long as a memory reference. The third, fourth,
sixth and seventh components are determined by
software and account for the bulk of the programmed
1/0 latency. The fifth component is determined by
the nature and the number of the data channel de-
vices operating in the system.

Programmed I/O latency is important because a
peripheral that must wait too long for program ser-
vice from the CPU may suffer from degraded per-
formance. The longest allowable delay between the
time when a peripheral sets its Done flag to 1 and
the time when the CPU transfers data to/from that
peripheral and sets the Done flag to 0 is called the
"maximum allowable programmed I/0 latency'' of
the peripheral. When the actual programmed 1/0
latency for a peripheral exceeds the maximum
allowable programmed 1/O latency, the specific
effects depend on the device in question. In the
worst case, data may be incorrectly read or
written. The maximum allowable programmed I/0
latency for each peripheral can be found under
Timing in the section devoted to that peripheral.

A peripheral service routine must usually perform
certain computations (updating pointers to buffers,
byte counter, etc.), but rarely are these compu-
tations so complex that they cannot be accomplished
within the constraints of the maximum allowable
programmed I/O latency. However, if several
peripherals are competing for service at the same
time, it may be necessary to jeopardize the per-
formance of some of them by deferring their re-
quests for program service until the CPU has
serviced the higher priority requests. For this
reason, all DGC computers incorporate the priority
interrupt facility described earlier.

The object of the priority interrupt facility is to
minimize the loss of important data. In order for
the programmer to achieve this end, the assign-
ment of the software priority levels should be made
in the light of the following considerations:

1. the maximum allowable programmed I/0 la-
tency for each peripheral,

2. the result of exceeding the maximum allowable
programmed I/0 latency for each peripheral
(slowdown or data loss), and

3. the cost of losing data.

Rev. 01

I-28

DATA CHANNEL CONTROL

Problems with time constraints can be encountered
when transferring data via the data channel. When
a peripheral needs data channel service, it makes
a data channel request. However, the CPU can
only allow data channel peripherals to access
memory at certain predefined times. (At such
times, it is said that data channel breaks are
enabled.) In addition, there may be more than
one peripheral waiting to access memory at any
one time. Consequently, there may be a signifi-
cant delay between the time when a peripheral
requests access to memory and the time when the
transfer actually occurs. This delay is called
data channel latency and has the following compo-
nents:

1. the time between the peripheral's request for
memory access and the next data channel
break, and

2. the time required to complete data channel
transfers to/from higher priority (closer)
peripherals that are also requesting memory
access.

The length of the first component depends on the
design of the CPU. In the NOVA, NOVA 1200
series, and SUPERNOVA (standard-speed) com-
puters, data channel breaks are enabled only be -
tween instructions so that long instructions
(MUL, DIV) and long indirect address chains can
have a significant effect on data channel latency.
In the NOVA 800 series, NOVA 2 series, ECLIPSE
and SUPERNOVA (high-speed) computers, data
channel breaks may be enabled during most in-
structions (but not during I/0 instructions), so
that data channel latency is reduced.

The length of the second component depends on the
number of data channel peripherals operating in
the system at a higher priority and the frequency
of their use.

Most peripherals using the data channel control
operate under fixed time constraints. Disc drives
and magnetic tape transports are typical data chan-
nel peripherals. In each of these devices, a mag-
netic medium moves past a read or write head at
constant velocity. If data is not read or written

at the correct instant, the data will be transferred

to or from the wrong place on the magnetic medi-
um. Consequently, on input, such devices must
be allowed to write a word into memory before the
next word is assembled by the controller, and on
output, the controller must be able to read a word
from memory before the surface is positioned
under the write head. In either case, if the data
channel latency is too long, data cannot be proper-
ly transferred. Most peripherals operating under
data channel control set an error flag when this
happens, so the service routine can take appro-
priate action to recover from the error, if
possible.

The "maximum allowable data channel latency'' of
a peripheral is the maximum time the peripheral
can wait for a data channel transfer. The range
of times is from a few microseconds to several
hundred microseconds. At the time the system is
configured, data channel priorities should be
assigned to peripherals on the basis of the follow-
ing considerations:

1. The maximum allowable data channel latency
of the peripheral. A peripheral with a short
allowable latency usually should receive a
higher priority than one with a long allowable
latency.

I-29

2. The recovery time of a peripheral (i.e., how
long before it can repeat a transfer that failed
because of excessive data channel latency) if
the peripheral can recover.

3. The cost of losing data from the peripheral if

the peripheral cannot recover.

If data channel latency seems to be a problem in
a system, latency might be improved by changing
the coding in the programs; less frequent use of
long instructions and lengthy indirect chains in
the NOVA and 1200 series computers, and less
frequent use of I/O instructions in the SUPER-
NOVA, 800 series, and ECLIPSE line of comput-
ers. In addition, there is an upper limit on the
number of data channel transfers/second that a
computer can support. In cases where this limit
is exceeded, the only solution is to reduce the num-
ber of peripherals using the data channel at the
same time.

High data channel use reduces the speed of pro-
gram execution since the processor pauses for
each transfer. This may adversely affect the
CPU's capacity to respond to interrupts and ser-
vice those peripherals operating under direct
program control.

Rev. 01
TIMING

This page intentionally left blank

1-30

PROGRAMMING EXAMPLES

INTRODUCTION

The four programs in this section illustrate vari-
ous techniques of I/O programming. Some of the
techniques used are: status checking; servicing of
basic peripherals (Teletype, paper tape punch and
reader); interrupt handling, including saving and
restoring the processor state, with and without
stacks, and dispatching to the proper peripheral
service routine; data channel programming; prior-
ity interrupt handling; and power fail/auto restart
programming. The programs are complete; if
desired, each of the first three can be assembled
and run on any DGC computer system with the
necessary peripherals. The fourth program re-
quires one of the ECLIPSE line of computers along
with the necessary peripherals.

The programs become successively more complex
in order to illustrate various programming meth-
ods and to show the costs and benefits of the use of
interrupts. As the complexity increases, so does
the efficiency of peripheral servicing, Example
One uses no interrupts in servicing Teletype and
punch. Example Two performs the same service
more efficiently by using the interrupt facility.

In Example Three, a priority interrupt structure
is introduced to provide the most efficient service
for an expanded set of peripherals which includes
a paper tape reader and magnetic tape unit.
Example Four, for use on the ECLIPSE computer,

utilizes the VECTOR instruction and stack facili-
ties to perform the bulk of the tasks performed by
the interrupt handler. However, the Teletype and
punch service in Examples Three and Four remains
functionally the same as before, so that the pro-
gramming styles represented by the example pro-
grams can easily be compared.

The basic idea of each program is the same. Pro-
gram computation is simulated by a short loop of
arithmetic instructions. A counter in memory
(LOC) is incremented on each pass through the loop
in order to provide a recognizable pattern of blink-
ing console lights. Periodically, these calcula-
tions are suspended in order to perform 1/0, at
the completion of which the calculations are re-
sumed exactly where they were left off.

The operation of the programs is functionally
identical with respect to Teletype and punch I/0.
When a key is typed, the calculations are sus-
pended and the character is read in, stored in a
buffer, and '*echoed" back to the Teletype. When
the line is terminated, either by a carriage return
or by the 72nd character, the entire line is output
to the punch. (In order to extend the punching
time for a single line, each character is punched
eight times.) The buffer is then reinitialized and
the program waits for more Teletype input as it
continues its calculations.

Rev. 01
PROGRAMMING EXAMPLES

EXAMPLE ONE

Example One is written without using interrupts.
(The interrupt system is disabled by the initial
IORST instruction.) The status of the Teletype
keyboard (device TTI) is checked periodically
(roughly every half a second). When a character
has been typed and is waiting to be read (Done flag
set to 1), the calculations are frozen and saved

(at IOSR) and the character is read in (READC),
stored in the buffer (STORE), and echoed back to
the Teletype. If this character does not terminate
the line, the frozen state of the calculations is
restored (RSTOR) and the calculations are re-
sumed. When a carriage return is read, it is
echoed and placed into the buffer as usual, after
which a line feed is added to the buffer and echoed.
If 72 characters are input with no carriage return,
both a carriage return and a line feed are sent to
the Teletype and put into the buffer. In either case

EXAMPLE ONE

the program then loops through the buffer, punch-
ing out each character in the line eight times
(NRPT=8). (A null character is output first to
provide eight frames of blank leader on the tape.)
When the full line has been punched this way, the
program reinitializes the character buffer and
resumes the calculations.

When Example One is actually run, it becomes
obvious that this is not an efficient way to handle
this type of I/O. The Teletype seems sluggish;
the infrequent checking of the Teletype status in-
troduces a delay before a character is echoed.

In addition, while a line is being punched, no char-
acters are recognized from the Teletype and all
calculations stop (the console lights stop blinking).
The obvious way to reduce this poor performance
is to use the interrupt facility, as Example Two
does.,

As

TURN TNTERRUFTE OFF

RE USFT

CLEAR TIONE

NECREMENT CHUNT TO CHFCK FOR L INE OUFRFLOW

ANTE

LLoc 20
BUFF~1 FAUTO-INCREMENTING LOCATION USED
7 OINDEFX INTO CHARACTER RUFFER
LLOC 400
¥ “HAINT FROGRAM
START: I0ORST iCLEAR T/0 DEVICES,
CALC: AL 0si FSIMULATE USEFUL COMPUTATION
SUR 1.2
INC 23
NEG 3s0
152 Lac
JMF CaLC
SRFION TTI SCHECK TTT STATUS FPERIODICALLY
JnF calC FCONTINUE COMFUTATION
JAMF TO8R s1IF CHARACTER I8 WAITING GO GET TIT
L.OC:s 0
; INFUT/0UTRUT SERVICE ROUTINE
I08R: STA Qs SAVED FSAVE ACCLIMUL ATORS THAT WILL
STA Iy 8AVER
HOVL 040 FEAVE CARRY
STaA Qs EAVEC
READC: DIAC CQsTTI sREAD THE CHARACTER AND
L& 30177 FNROF PARITY RIT
AN 3.0
STORE: 8TA 0320 FSTORF CHARACTEFR IN RUFF
SKFRZ TTQ STTQ READY?
JSMF -1 INCy TRY AGATM
Daas O0,TTO FYESy FCHO CHARACTER
LDA 3 CR P18 CHARACTER A CARRTAGE RETURMT
SUBR% Z»0s8NR
JME CRET FYFSy GO PROCESS TT
ng?y CHONT FNO
JdMF RETOR PO QUERFL Wy EXIT
HOu KEAY sLINE IS FUbLy LOADIN A CR
JMP STORE i JUMF RACK TO

I-32

INSFRY IT TNTO RUFF

CRET:

NEWC:

SAMEC:

RSTOR:

C177:
CR:
LF2

ARUFF ¢
MAX:
CHCNT:

FCCONT:
FRCNT:
NRFT:

SAVEOQ:
SAVE3:
SAVEC:

RUFF ¢

EXAMPLE ONE (Continued)

LA
STA
SKFRZ
JMF
hoas
LIA
LDA
SUE
STA
STA
SUK
LDaA
SKFRZ
JME
NOAS
nsz
JMF
L DA
STA
LSz
JMF
LA
STaA
LDA
STA

LIA
HOVR
LDA
LDA
JMF

177
15
12

EUFF -1

110
110

0
10
10

o]
0
0
-RLK

-END

OsLF
0,320
TT0

.1
0,TTQ
0y20

3 ARUFF
3290
OyFCOCNT
3y20
0y0ySKF
0,820
FTF

=1
OsyFTF
FRCNT
SAMEC
OsNRFT
OsFRONT
FCCNT
NEWC

Oy MAX
Oy CHCNT
OvARUFF
0920

0y SAVEC
Q0:0

0y SAVEQ
3y SAVEZ
CaLC

112

START

FADRD L INE FEED TO RUFF

FWAIT UNTIL TTO REANY

;GIVE LINE FEED
SCALCULATE NUMRFR OF CHARACTERS TN RUFF

FINITIALTZE PUNCH CHARACTER COUNTER
FRESET RUFFER INDEX TO REGINNING OF RUFF
FJFIRST FUT QUT 8 FRAMES OF KLANK LFADNFR
FGET NEW CHARACTER

FWAIT UNTTIL FUNCH READY

FOUTFUT CHARACTER TO FUNCH
FOECREMENT FUNCH REFEAT COUNTFR
FGO FUNCH SAME CHARACTER AGAIN
FREINTTIALIZE FUNCH REFEAT COUNTER

SOFCREMENT FUNCH CHARACTER COUNMTER

FSTART FUNCHING NFW CHARACTER

FALL DONE, RETIMITIALIZE CHARACTFR RUFFER:
i INITIALIZF CHARACTFR COUNTER

i INITIALIZE CHARACTER RUFFER TNDOFX

FRESTORE CARRY AND ACCUMUL ATORS

FRETURN AND RESUME COMFUTATION

FMASK FOR DELEFTING FARITY RIT
FCARRIAGE RETURN
SLINE FEED

FANDRESS OF CHARACTER RUFFFR - 1

IMAXIMUM OF 72 CHARACTERS INFUT FFR L INE
SCHARACTER COUNTER (COUNTS DOWN FROM MaX)
FFUNCH CHARACTER COUNTER

FFUNCH REFPEAT COUNTER

FNUMEBFR OF TIMES TO FUNCH FACH CHARACTFER
FACCUMULATOR SAVE LOCATIONS

FCARRY SAVE LOCATION

FCHARACTER RUFFER - ALLOW FOR 72 CHARS + CR + (F

I-33

PROGRAMMING EXAMPLES

EXAMPLE TWO

Example Two performs the same input/output
operations that Example One does, but with its
use of the interrupt facility it functions much
more efficiently., Two major benefits of the inter-
rupt are illustrated:

1. The program need not check the TTI status
while it is performing its calculations--the
calculations are interrupted automatically
when there is I/O to be done. This eliminates
the sluggishness encountered in Example One;
in Example Two the response to typing a char-
acter appears to be immediate.

2. In the periods during which the computer is
waiting for an I/O (in this case the punch) to
complete an operation before starting it on
another operation, a program which uses in-
terrupts can perform other computation. When
Example Two is actually run, the console
lights continue to show calculations being per-
formed while the punch is running. Note,
however, that while the punching is being done,
TTI interrupts must be ignored. Otherwise,

a carriage return given while punching was
going on would terminate the line being punched
and start the new one. A program check is
employed in Example Two to avoid this prob-
lem. Right after a character is read in

EXAMPLE TWO

(READC), if a line is being punched

(PCCNT >0), the character is ignored and the
interrupt is dismissed immediately. In Exam-
ple Three, use of a priority interrupt scheme
eliminates this problem, so that characters
can be accepted from the Teletype during
punching.

A polling routine is used in Example Two to deter-
mine which peripheral caused the interrupt. The
I/O SKIP instructions (beginning at IHAND) are
ordered so that the higher-priority devices are
interrogated first. Although the order is not
critical for such slow devices as are used here,

it is generally good practice to check the higher-
priority peripherals first.

Three other things should be noted. The first in
struction (at START) is now DICS 0,CPU. This
resets all peripherals as does an IORST, but it
also enables, rather than disables, the interrupt
facility. Secondly, Teletype output (TTO) inter-
rupts are unconditionally ignored by merely clear-
ing the Done flag and returning. Thirdly, for
computers with the power monitor and auto-restart
feature, a power fail service routine has been
written. In Example Two this routine (PFLSR)
merely saves the state of the processor and halts.
A more involved routine, which provides auto-
restart capability, is included in Example Three.

.Lac o

0 FFC STORED HFRE ON INTEFRRUFT

THAND FINTERRUFT HaANDLFR ANDRESS

LLOC 20

BUFF -1 FAUTO-TNCRFMENTING LOCATION USED AS
§OINDEX INTQ CHARACTFR RUFFER

LOC 400

“MAIN” FROGRAM

START: NICS 0OyCFU FIORST AND INTEN

CalLC: ALl 01 FSIMULATE USEFUL

SUR 12

INC 2,3

NEG 350

187 Lac

JMP caLC

JMF Cal.C
L.ac: 0
H INTERRUPT HANDLER
THANDII: SKFDZ CFRU

JSMF FFLSR
SKFNIZ FTF

COMPUTATION

FINO NFED 70 CHFCK HFRE FOR TTT DONE

FPOLL DEVICES TO LOQCATE SOURCE QOF INTFRRUPT
SFOWER FATL INTERRUPT

EXAMPLE TWO (Continued)

FFLSR:

SAVEQ:
SAVEL:
SAVE2:
SAVE3:
SAVEC:

-

TTISR:

READC:

STORE :

CRET =

TTING:

JMF
SKFIZ
JME
SKFIN
HAL.T
NIQC
INTEN
JMF

FOWER

8Ta
8TA
8Th
STA
MavL
STA
HALT

SCOOQO

FTFSK
171
TTISR
TT0

170

@0

FFAPER TAFE FUNCH TNTERRUPT
STELETYFE TNPUT INTERRUPT

FEPURIOUS INTEFRRURT

STELFTYFRE QUTPUT, TGNORE INTERRUFT
FENABLE INTERRUPTS

FRETURN TO INTERRUFTED FROGRAM

FAIL SERVICE ROUTINE

0y SAVED
1»8AVE1L
2y 8AVE?D
Iy 5AVER
0,0

0y SAVEC

FFOWER FATLURE, SAVE ACCUMULATORS AND CARRY

FWAIT FOR FPOWER TO GO DOWN

FACCUMUL ATOR SAVE LOCATIONS

sCARRY SAVE LOCATION

TELETYFE INFUT SERVICE ROUTINF

8TA
SThA
MOVL
8TA

nIac
L ItA
AN
LDA
MOV
JMF
STaA
SKFRZ
JME
noas
LDA
SUR%
JMF
ngz
JMF
Moy
JMF
LA
STA
SKFRZ
JMF
DOAS
LA
LA
SUR
STA
STA
SUR
DOAS
STaA

LOA
MOVR

0+8AVED
3y SAVES
0s0

Qs SAVEC

0 TTI
3:C177
3,0

3y FCONT
3y3sG7K
TTINRS
0320
TTO

.1
LERNEL
3yCR
3,0:5NR
CRET
CHONT
TTIDS
320
STORE
OsLF
0020
TT0

.1
0sTTQ
0y20

Iy ARUFF
20

Qs FCONT
Iy 20
QyQ
OsFTF
0y CCHAR

01 SAVEC
Q20

FSAVE ACCUMULATORS THAT WILL RE USFD

FSAVE CARRY

FREADN THE CHARACTER AND CLEAR DONE
FOROF FARITY RIT

IS FREVIQUS LINE REING PUNCHEDR?

FIF YESy THEN TGNORF THIS CHARACTER
F8TORE CHARACTER IN RUFF

iTTO READY?

iNOy TRY AGAIN

FYESs ECHO CHARACTER

I8 CHARACTER A CARRIAGE RETURN?

FYESy GO FROCESS IT

iNOy DECREMENT CHCONT TO CHECK FOR LINE OVERFLOW
INO OUFRFLOWs GO NTISMISS TNTERRUFT

FLINF IS FULL, LOAD A CR AND ‘

i JUMF RACK TO INSERT TT INTQ RUFF

JADD LINE FEFD TQ RUFF

FWAIT UNTIL TTO RFADY

FGIVE LINE FEED
FCALCULATE NUMEBFR OF CHARACTERS TN RUFF

FINTTIALIZE FUNCH CHARACTER COUNTER
SRESET BRUFFER INDNEX TO REGINNING OF RUFF

FFTRET FUT OUT 8 FRAMES OF ERL ANK LFANFR
FSAVE NULL AS CURRENT CHARACTER

FTTI INTERRUFPT DTGMISEAL
FRESTORE CARRY AND ACCUMUL ATORS

1-35 PROGRAMMING EXAMPLES

EXAMPLE TWO (Continued)

LDA 0 SAVED
LDa 35 8AVEZ

INTEN
JMF @0
Ci77: 177
CR: 15
LFe i2

ARUFF: RUFF-1
MAaX: 110
CHCNT2 110

FENARLE TNTERRUFPTS
FRETURN TO INTERRUFTEDN FROGRAM

FMASK FOR DELETING FARITY RTT
FCARRIAGE RETURN
FLINE FEED

SALDNIRESS OF CHARACTER ERUFFER - 3
FMAXIMUM OF 72 CHARACTERSE INPUT FER LINE
FCHARACTER COUNTER (COUNTS DOWN FROM MAX)

FCCNT2 © FFUNCH CHARACTFR COUNTER

FRCNT: 10 FFUNCH REFEAT COUNTER

NRPT: 10 FNUMRER OF TIMES TO FUNCH FACH CHARACTER
CCHAR: © FCURREFNT CHARACTER SAVE LOCATTON

H FAFER TAFPE FUNCH SFRVICE ROUTINE

FTPSK: STA 0sSAVEO
STA 31SAVE3

GCHAR: LDA 0y CCHAR
nsz FRCNT
JMF SAMEC
LDA Qs NRFT
STA Qs FRCNT

sz FCCNT
JMFP NEWC
NIOC FTFE

LIA OsMAX
STA 0y CHUNT
LA O»ARUFF
STA 0,20
JMP FTFDS
NEWC: LDA 0y@20
STA 0 CCHAR
SAMEC: DOAS OsPTPR

FTEDS: LDA 0y SAVEQ
LDA 3 8AVE3

INTEN

JMF (C1e]
RUFF ¢ LEBLK 112

SENDI START

FSAVE ACCUMULATORS THAT WILL RF USED
F (CARRY WILL NOT RE CHANGEID

FiGET CURRENT CHARACTER

FOECREMENT FUNCH REFEAT COUNTER
G0 FUNCH SAME CHARACTER AGAIN
SREINITIALIZE FUNCH REFEAT COUNTER

FOECREMENT FUNCH CHARACTER COUNTER
;GO FUNCH NEW CHARACTER

SALL DIONEs CLEAR FUNCH
FREINITIALIZE CHARACTER BUFFER:

i INTTTALIZE CHARACTER COUNTER

i INITIALIZE CHARACTER RUFFER INDEX

G0 NTGMISS TNTERRUFT

FGET NEFW CHARACTER

FUFTIATE CURRENT CHARACTER SAVE
;OUTHFUT CHARACTER TO PUNCH

FETFE INTERRUFT DISMISEAL
FRESTORE ACCUMUL ATORS

FENARLE INTERRUFTS

FRETURN TO INTERRUFTED FROGRAM

FCHARACTER RUFFFR - aALLOW FOR 72 CHARS + CR + LF

I-36

EXAMPLE THREE

Example Three creates a full priority interrupt
structure and provides even more efficient I/0
processing. Two peripherals are added to the
program: the high-speed paper tape reader, as a
peripheral which requires service quickly enough
that it could benefit from such a priority interrupt
structure, and a magnetic tape drive, as a periph-
eral which uses the data channel. In addition to
the Teletype and punch I/0O of the previous two
examples, Example Three allows a block of infor-
mation to be read in through the high-speed
reader, stored in a second buffer, and written out
to magnetic tape. This sequence is initiated by
typing control-R at any point in a Teletype input
line. Doing so will store the control-R in the
buffer but echo it by ringing the Teletype bell.

When the completed line is punched, any
control-R's in the line are punched only once (in-
stead of the usual eight times), and it starts the
paper tape reader. For each control-R, one block
of paper tape (delimited by one or more null
frames) is read. After a block is read, 100-word
sections of the block are written to magnetic tape
via the data channel. (A block on paper tape pro-
duced by this program on the punch can be as long
as 74 x 8 = 592 frames, equivalent to several mag-
netic tape records of the arbitrary length 100.)
When all the writing is done, the paper tape reader
is started again if there were additional control-R's
input.

Priority Structure

The interrupt priority masks are set up to create
the following priority structure among active
peripherals, from highest priority to lowest:

paper tape reader
magnetic tape
paper tape punch
Teletype input
Teletype output

The paper tape reader is given highest priority be -
cause it has the shortest allowable programmed
1/0 latency. In order to keep the reader operating
at maximum speed, response to its interrupt re-
quests must occur within 100 microseconds.

The magnetic tape unit receives next priority.
-Although magnetic tapes transfer data much faster
than the paper tape reader, they do it through the
data channel; interrupts are requested only after
entire blocks of information have been trans-
ferred. Interrupt requests from the paper tape
reader, which occur every frame, consequently
come more frequently than those of a magnetic
tape unit.

The paper tape punch and Teletype keyboard (TTI)
receive priority in that order, according to their
speeds. Finally, Teletype output (TTO) is always
masked out, since the program does not need or
want to know about TTO interrupts. There is no
timing problem because Teletype output can keep
up with Teletype input.

Interrupts may come from two other sources in
addition to the peripherals mentioned above. If
the computer includes the power monitor and auto
restart feature, an interrupt will occur if power
should fail. Since power fail interrupts cannot be
masked out, a power failure has priority over all
other peripherals. The second other source of an
interrupt is a peripheral from which the program
does not expect an interrupt. (For example, an
interrupt from a second terminal may occur if it
is used when the program is running. The pro-
gram handles such a spurious interrupt merely by
clearing the interrupting peripheral's Done flag
and returning to the interrupted program. The
Interrupt On flag is left set to 0 during this short
process; consequently, spurious interrupts, like
power fail interrupts, have priority equal to that
of the paper tape reader, the highest-priority
active peripheral.

Priority Interrupt Handler

The interrupt handler in Example Three differs
from that in Example Two in a number of ways.
The reason for these differences is twofold:

1. Example Three sets up and maintains a
priority interrupt structure.

2. Example Three includes programming to
handle spurious interrupts and to make use
of the power monitor and auto-restart feature.

The interrupt handler uses the INTERRUPT
ACKNOWLEDGE instruction (INTA) to identify the
source of an interrupt. The device code read by
the INTA instruction is used as an index into a
64-~word interrupt dispatch table (IDTAB) which
contains the starting addresses of the various
peripheral service routines. The main interrupt
handler dispatches control to the appropriate
peripheral service routine by performing a '* jump
indirect" (JMP@) to the correct table location.
Table locations which correspond to peripherals
not provided for in Example Three contain the
address of the spurious interrupt handler (SIH).

In order to change the current priority level when
an interrupt occurs, a new interrupt priority mask
must be established. In addition, the previous
value of the mask must be saved so that it can be
restored when the current interrupt service is
finished. In Example Three, the various periph-

Rev. 01
PROGRAMMING EXAMPLES

1-37

eral service routines are responsible for manip-
ulating the old and new masks. The old mask is
retrieved from the location reserved for it (MASK)
and stored in the routine's save area. Then a new
mask, which reflects the priority structure re-
quired by the peripheral, is loaded into AC0O. The
new mask is established by executing two instruc-
tions: (1) DOBS 0,CPU, which is a combination
of the MASK OUT and INTERRUPT ENABLE in-
structions, sets up the Interrupt Disable flags in
the system and turns interrupts back on, so that
higher-priority peripherals may interrupt the cur-
rent service routine. (2) STA 0,CMASK stores a
copy of the new mask in the current mask save
location, These two instructions should, in
general, always be given together, so that the cur-
rent value of the mask stored in memory (at
CMASK) matches the states of the Interrupt Disable
flags. Note also that the mask must be set up at
the beginning of the program, before interrupts are
enabled. In Example Three a DOBS 0,CPU in-
struction initializes the mask to 1 to mask out
Teletype output and turns interrupts on. No inter-
rupt can occur until after the STA 0, CMASK in-
struction which follows immediately.

Because a higher-priority peripheral may interrupt
the service routine of a lower-priority peripheral,
the first portion of the interrupt handler must be
written in such a way that no information vital to
the currently executing service routine is lost when
a higher-priority interrupt occurs. Therefore,

the information of interest must be protected be-
fore interrupts can be enabled. In any priority
interrupt handler, the current mask and the return
address stored in location 0 must be saved. In
Example Three, it is also necessary to transfer the
saved values of ACO and AC3 from the temporary
locations SAVEOQ and SAVES3 to the protected area
special to each peripheral service routine (TSAVO0
and TSAV3 for Teletype input service, for exam-
ple). (The save area for each service routine is
protected because Example Three is set up so that
no peripheral can interrupt itself.) It is not neces-
sary to store the values of the accumulators or
Carry in a protected area before enabling inter-
rupts. Any higher-priority service routine that
interrupts a lower-priority routine before the
lower-priority routine saves the values of the
accumulators it needs to use is required to ensure
that, upon return to the lower-priority routine, the
accumulators are restored to the values they had at
the time of the higher-priority interrupt. Conse-
quently, information in Carry or the accumulators
is " safe" with respect to higher-priority inter-
rupts.

1-38

The power fail service routine has been expanded
in Example Three to make use of the auto-restart
feature. When a power fail interrupt occurs, the
Carry and accumulators are saved, and the com-
puter is readied for an auto-restart. This in-
volves placing a JUMP instruction in location 0.
When auto-restart occurs, the computer auto-
matically simulates a JMP 0 instruction (note: not
a JMP @O instruction). The restart instruction
stored in location 0 (JMP @RSTAD) transfers
control to the restart code (RSTRT), where the
state of the machine is restored and the program
is picked up where it left off when power failed.
Each peripheral has a software '"active' flag set
when it begins an operation, so the program can
check on how far the operation proceeded before
power failed. Since the magnetic tape unit could
have lost power anywhere within the current record
it was writing, the program erases a section of
tape and rewrites the entire record. Note that an
auto-restart will occur only if the power switch is
in the '"lock" position. However, if the power
switch is not in '"lock" , the same effect can be
produced manually by starting the computer at
location 0.

A routine (SIH) is included in Example Three to
handle spurious interrupts. It merely clears the
peripheral which caused the interrupt and then
returns to the interrupted program. The periph-
eral is cleared by executing an NIOC instruction
with the device code read by the INTA instruction
given earlier.

The power fail routine, the spurious interrupt
handler, and the paper tape reader service routine
are given ' absolute" priority while they are
executing. Interrupts are not reenabled by these
routines, so no other interrupt is allowed to occur.
Consequently, these routines need not manipulate
the priority mask nor safeguard the return address
stored in location 0,

In Example Three each service routine is respon-
sible for dismissing the interrupt on its own. This
involves restoring the states of Carry, the accumu-
lators, and the previous mask, and returning to
the interrupted program. The priority mask
should be changed only when interrupts are dis-
abled. Therefore, the dismissal sequence must
disable interrupts before restoring the mask, then
enable them and immediately jump back to the
interrupted program. In Example Three, a

DOBC 0,CPU is given to change the mask and dis-
able interrupts. Then location CMASK is restored,
the last of the accumulators is restored, interrupts
are enabled, and control is returned to the inter-
rupted program.

EXAMPLE THREE

.1.0C

0

THAND
CHASK: O
RSTAD: RSTRT
SAVEO: ©
SAVEl: 0
SAVE2: O
SAVE3: 0
SAVEC: 0O
FACTV: O
RACTV: 0
MACTV: O

.Loc

RUFF-1

RUFF -1

RUFF2-

.LoC
H “MAINT

START: TORST

0

sFC STORFD HERF ON INTERRUFT
FINTERRUFPT HANDILER ADDRFSS
FCURRENT MASK SAVE LOCATION
FAUTO-RESTART ANDRFSS
FSAVF AREA FOR MAIN INTERRUFT HANDLFR AND
§ FOWER FAIL SERVICE ROUTINF
FFC ANDI CARRY SAVE LOCATION
FPUNCH ACTIVE FLAG
FREATIER ACTIVE FLAG
iMAG TAFE ACTIVE FlAG
20 FAUTO-TINCREMFNTING LOCATIONS
FFIRST TNDEX INTO FIRST CHARACTER RUFFER
FSECOND INDEX INTO FIRST CHARACTER RUFFER
1 FINDEX INTO SECOND CHARACTER RUFFFR
400
FROGRAM

FCLEAR T/70 DEVICES

LIa Oy RWIND FREWIND MAG TAFE
n0AS O'MTA
SUERZL 0,0 FSET ACO TO 1
nors o0sCruU FMASK OUT TTO (RIT 15) AND TURN ON TNTFRRUFTS
STA 0> CMASK FSAVE CURRENT MASK ‘
caLC: AlD Oy FSTMUL ATE USFFUL COMPUTATION
SUR 12
INC 2,3
NEG 3s0
187 L.ac
JMF caLC
JIMF caLC
Lac: 0
RWIND: 10 FREWIND COMMAND (SELECTS IRIVE O)
i INTERRUFT HANDLER
THANDI: STaA 0+ BAVED FSAVE ACO ANDN AC3 FOR USE WITH TNTA
STA 3rSAVEZ '
SKFDZ CrU FCHECK FOR FOWER FAIL INTERRUFT
JMF FFLSR
Lba 3yAINTR FGET ADNRESS OF INTERRUFT NTSFATCH TARLE
INTA O JREAD DEVICE COnDFE
Al 03 SEOINT 7O CORRFCY TARLE ENTRY
JHF @0, 2 FOTSFATCH TO PERIFHERAL SERVICE ROUTINF

AIDTR: TILTAR

FOWER

s

FFLSR: STA
874
LiA

FANDRESS OF TNTFRRUFT DISFATCH TAERLE

FAIL/AUTO-RESTART SFRUICF ROUTINE

1sSAVEL FSAVE RFMAINING ACCUMUL ATORS
21 SAVEZ
0+0 FGET SAVED PC FROM LOCATION O

1-39 PROGRAMMING EXAMPLES

EXAMPLE THREE (Continued)

JUMF 2

RSTRTs

RSTOR:

AMTAR:

NIOCO:

-

TTISR:

REANC:

MOVL
STA
LDA
STA
SKFIZ
JIMF
JMF

JHF

LA
HOoVE
NIOS
LIa
MOV
NIGS
L DA
MOV=
JSR

LDA
RORC
LA
MOVZR
STA
LA
LA
LDA
LA
INTEN
JMF

MTAAR

00
0ySAVEC
0 JUMF
Q0

CFu

=1
RSTOR

GRSTAD

OsFACTY
0r0+8ZR
FTF

0»RACTY
0r0+8ZR
FTR

Qs MACTY
0r»0s8ZR
BAMTAR

0y CMASK
0yCFU
0y SAVEC
0s0

00

0+ SAVED
1sSAVEL
21 SAVE2

35 BAVEZ

@0

FAPFEND CARRY AT LOW END

iSAVE FC AND CARRY ‘
FSET UF RESTART INSTRUCTION IN LOCATION
SLOOF HERE WAITING FOR FQWER TQ GO DOWN
FIF IT COMES RACK UF GO AHEAD AND RESTORE

JINSTRUCTION FOR JUMFING TO RESTART CONF

FWAS FTF ACTIVE?

iIF YESs RESTART IT
FWAS FTR ACTIVE?

iIF YES» RFSTART TT
FWAS MTA ACTIVE?

sIF YESy GO RESTART IT
FRESTORE CURRENT MASK

FMSKD ANDL TNTIDS

FRESTORE CARRY ANDN SAVED FC

FSET UP RETURN AIDREESS
FRESTORE ACCUMULATORS

FENARLE INTERRUFTS
FRESTART PROGRAM

FADRDRESS OF ROUTINE TO RESTARTY MAG TAFF

ROUTINE TO HANﬁLF SFURTIOUS INTERRUFTS

LA
All
STA

V]

LbA
LA
INTEN
JMF

NIQC

IyNIQCO
03
Iy, +1

0y SAVEQ
3ySAVE3

@0

0

FCLEAR DEVICE THAT CAUSEDN THE TNTERRUFT:

FFORM AN NIOC INSTRUCTTON WITH AFFROPRIATE NEVICE CORE
FSTORE THE TNSTRUCTTION

FEXECUTE THE INSTRUCTTON

FRESTORE ACCUMULATORS -

FENARLE INTERRUFTS
FRETURN TOQ INTERRUFTED PROGRAM

FUSED TO CREATE AN NIOC (DFVICE> TNSTRUCTION

TELETYFE INFUT SERVICE ROUTINE

LIA
STA
LA
STa
LoA
STA
LIA
LIA
[ORS
8TA
MOUVL
STA

LIAC
LA
AND

0+ SAVED
Oy TEAVO
0 SAVES
Oy TSAVZ
0y CMASK
0y TSAUNM
3:0

Qs THASK
0sCFU
Qs CHMASK
2:3

3y TSAVC

0sTT1
3:C177
3:0

FSAVE ACO AND ACI IN TTT SAVE AREA

FSAVE CURRENT MASK

LOAD RETURN ARDREGS INTO AC3

FiGET NEW HMASK

FMEKO ANIE TNTEN

FUFTATE CURRENT MAGK SAVE LOCATION

FAPFEND CARRY TO LOW ENDIN OF RETURN ARDRESS
FSAVE RETURN ADDRFSS ANDIU CARRY

SREAD THE CHARACTER AND CLEAR DNONF
FOROF FARITY RIT

1-40

EXAMPLE THREE (Continued)

STORE: STA 0,020 FSTORE CHARACTER IN ERUFF
LDaA 3sCNTLR FCHECK FOR CONTROL R
SUBT 3s0ySNR

LDA OsERELL FECHO CONTROL K RY RINGING KFELL

SKFRZ TTO 5TTO READIY?

JMF .1 FNOsy TRY AGAIN

DOAS 0sTTO FIYESy FCHO CHARACTER

LD& 3sCR §1S CHARACTER A CARRIAGE RETURN?

SUB* 3,0,SNR

JMF CRET FYESs GO FROCESS TT

Dsz CHCNT INOy DECREMENT CHCNT TO CHECK FOR LINF QUERFL QW

JHF TTIDS iNO OVERFLOW» GO DISMISS INTERRUFT

MOV 3y0 SLINF I8 FULLs LOADl A CR AND

JMFP STORE i JUMFP BACK TO INSERT IT INTO RUFF
CRET: LIA OsLF JADD LINF FEFD TO RUFF

STA 0,020 '

SKFEZ TTO SWAIT UNTIL TTO READNY

JMF o1

[0AS OyTTO JGIVE LINF FEED

LDA OrFCONT FWAIT IF FUNCHING OF FREVTOUS LINE IS NOT DONF
MOVE 0s0,8ZK

JMF 2

LA 0220 SCALCULATE NUMRER OF CHARACTERS IN RUFF
LA 3sARUFF

SUR 340

8STaA Qs PCCNT FINITIALIZE FUNCH CHARACTEFR COUNTER

LbA O MAX SREINITIALIZFE CHARACTFR RUFFFRS

STA 0y CHCNT INITIALIZE CHARACTER COUNTER

H
8TaA 3y 20 § INITIALIZE CHARACTER BUFFER POINTERS IN
STA 3y21 i AUTO~INCREMENTING LOCATTIONS 20 AND 21
SUER 0,0 FFIRST FUT QUT 8 FRAMFS OF RLANK | FANFR
INTDS FMAKE SURE THAT FUNCH STARTEI! ANDI FLAG SET TOGETHER
DOAS OsFTF FOUTFUT NULL CHARACTER
182 FACTV FSET FUNCH ACTIVE FLAG
INTEN

STA 0» CCHAR FSAVE NULL AS CURRFNT CHARACTER

TTIDG: LDA 0 TSAYC STTI INTERRUFT DISMISSAL
MOVZR 040 FRESTORE CARRY ANDN SFT UF RFTURN ANNRESS
STA 0s TSAVC .
LDA 3y TSAYZ FRESTORE AC23
LA 0 TSAVUNM sGET PREVIOUS MASK
DORC 0OsCFU FMSKO AND TNTIS
STA O CMASK FRESTORE MASK SAVE LOCATION
LA 0:TSAVO FRESTORE ACO

INTEN FENARLE TNTERRUFTS

JMF @TSAVC FRETURN TO INTERRUFTED FROGRAM
T8AVO: O FTTI SAVE ARFA: ACO
TSAVZ: O FAC3
TSAVC: 0 FRETURN ANDRFSS ANDIN CARRY
TSAUM: O FCURRENT MASK
TMASK: 3 FMASKS OUT TTI ANDI TTOQ
Ci77: 177 FMASK FOR DFELFTING FARTITY RIT
CRz 158 FCARRTAGE RETURN
LFz 12 FLINE FEFD
CNTLR: 22 FCONTROL R
RELL® 7 STELETYPFE EKELL
ARUFF: RUFF-~1 JADDRESS OF CHARACTER BUFFER - 3
MAX = 110 FMAXIMUM OF 72 CHARACTERS TNFUT FFR L INF
CHCNT: 110 FCHARACTER COUNTER (COUNTS DOWN FROM MAY)
FCCNT: O FFUNCH CHARACTER COUNTER
FRENT: 10 FFUNCH REFEAT COUNTER
NRFT: 10 FNUMRER OF TIMFS TO FUNCH FACH CHARACTER
CCHAR: 0O SCURRENT CHARACTER SAVE LOCATTON

I-41

PROGRAMMING EXAMPLES

EXAMPLE THREE (Continued)

-
’

FTRSR:

GCHAR®

CONTF:

NEWC:

SAMEC:

FTROR:

FTFDSE

FSAVO:
FSAV3:
FSAVC:
FSAUM:

FMASK:
RECNT

FAFER TAFE FUNCH SERVICE ROUTINE

LDA
STaA
LDA
8TA
LDA
STA
SUR
STA
LDA
LA
noERs
8TA
MOVL
8Ta

LA
LDA
SUR
JMF
nsz
JMF
LDA
85TA
sz
JMF
NIOC
JMP

LDA
STA
INTDS
noAs
182
INTEN
JHF

152
LIA
ALCT
JMF
INTDS
NIOS
152
INTEN
LbA
8TA
JME

LDA
MOVZR
STA
LA
LDA
NORC
STA
LA
INTEN
JMF

OO0

~

0y SAVEOQ
Q0sFSAVO
0y SAVES
0sFSAVI
0y CMASK
OsFSAUNM
020
QsPACTV
2y0

0 FMASK
0:CFU
0y CHMASK
32y 3
3yFPSAVC

0y CCHAR
35CNTLR
03 8NR
FTRIIR
FRONT
SAMEC
QyNRFT
Oy PRCNT
FCONT
NEWC
PTF
FTFIDS

0021
Qs CCHAR

O»FTF
FACTY

FTPNG

RRONT
Oy RECNT
3y DySZR
CONTF

FTR
RACTY

Oy ARUF2
Qs 22

CONTF

0sFSAVC
0s0

0 FSAVC
3 FSAVE
Oy FSAUM
OyCFU

0 CHASK
0 FSAVO

GFSAVC

iSAVE ACO AND ACZ IN FTF SAVF AREA

iSAVE CURRENT HASK
FCLEAR FUNCH ACTIVE FLAG

FLOAD RETURN ADDREFSS INTO AC3

FGET NEW MASK

FMSKRO ANDL INTEN

FUFDATE CURRENT MASK GAVFE

FAFFEND CARRY TO LOW END OF RFTURN ADDRESS
iSAVE RETURN ADDRESS AND CARRY

FGET CURRENT CHARACTER

$I8 IV CONTROL R?

§ (AC3Z RECOMES O IF CHARACTER TS CONTROL R)
SYESy INFUT FROM READER

FNOy DFCREMENT FUNCH REFEAT COUNTER

60 FUNCH SAME CHARACTER AGAIN
FREINITIALIZE FUNCH REFEAT COUNTER

FOECREMENT FUNCH CHARACTER COUNTER
;G0 FUNCH NFW CHARACTER

FALL DONEs CLFAR FUNCH

$G0 NISMISE TNTERRUFT

iGET NEW CHARACTER

FUPDATE CURRENT CHARACTER SGAVE

FMAKE SUREF FUNCH STARTED ANDIN FLAG SET TOGETHER
SOUTFUT CHARACTER TO FUNCH

sSET FUNCH ACTIVE FLAG

GO DTSMISE TNTERRUFPT

FINCREMENT RFADFR RLOCK COUNTER

IS THIS THE FIRST PTR REQUEST?

F(SKIF IF ACO = 1)

FNOy CONTINUE FUNCHING WITH NEXT CHARACTER
FMAKE SURE READER STARTFDN AND FLAG SET TOGETHER
$START RFAIFR

FSET READER ACTIVE FLAG

FINITIALIZE SFCOND CHARACTER RUFFER
FUSE AUTO-TNCREMENT LOCATION 22 A8 TNDFX
FCONTINUE PUNCHING WITH NEXT CHARACTER

JRTP INTEFRRUFT NISMISSAL
JRESTORE CARRY ANDI SET UF RETURN ADNNRESS

FRESTORE ACZ

FGET PREVIOQUS MASK

FMSKO AND ITNTRS

FRESTORE FREVTOUS MaASK SaVE
FRESTORE ACO

FENARLE INTERRUFTS

FRETURN TO INTFRRUFTFD PROGRAM

iFTF SAVE ARFAI ACO

FAC2

FRETURN ADDRESES AND CAREY
FCURRENT MASK

FMAGKS QUT PTFs TTT» AND TTO

FNUMBER OF RLOCKS LFFT TO RFAD FROM FTR

I-42

EXAMPLE THREE (Continued)

ARUF 2

FTRSR:

SFTR:

ZEROF 2

FTRIG:

RSAV1®
RSAVC:

BRUF 2t

RFCNT:
CHECK:

-
L]

MTABR:

RUFF 2~

1

FANDRESS OF SECOND CHARACTER RUFFER - 1

FAFER TAFE RFADNER SFRVICE ROUTINE

STA 1»R8AVE
MOVL 0+0

STA 0y RSAVE
NIAC OyFPTR
LA 3y CHECK
STA 0y CHECK
MOV: 020,5NR
JMF ZEROF
STA 0,322
182 RFCNT
NIOS FTR

JMF FTRIG
MOVE 3y3sSNR
JMF SFTR
STA 0y@22
182 RFCNT
SUR 0y0

STa OyRACTY
LDa 1y BRUF?
JSR MWRIT
LIA 0 RSAVC
MOVR 0+0

LA 1sR3AVI
LDa 0 SAVED
L.ha 3+8AVEZ
INTEN

JMF @0

0

0

RUFF2

0

0

MAG TAFE

LA Q0 SAVEQ
STA 0 MB8AVO
LDa Oy SAVEZ
STA Qs MSAV3E
LA Oy CHASK
STA O MHSAUM
SUR 0rQ

STA Oy MACTY
LA 290

LA 0y MMASK
NORS OsCPU
STa Q) CHASK
MOVL 353

STA 2y MSAVC
STA 1 M84aV1
LIaA OsMTA
MOVLE 0+0452C
JMF ERROR
LA Oy RFUNT

i SAVE ONE MORF ACCUMULATOR ANDt CARRY
FSINCE FTR HAS HIGHEST PRIORITYs LFAVE INTERRUFPTS

i OFF> AND NON'T ROTHER WITH RETURN ADNRESS OR MASK

FREAD FRAME AND CLEAR DIONE

FGET FREVIOUS FRAME READ

FOAVE NEW FRAME

F18 NEW FRAME = 07

f$YES

iNOs SAVE IT IN RUFF?

FINCREMENT READNER FRAME COUNTER (NEVFR QKIF)
iSTART READER FOR NEXT FRAME

G0 DISMIES TINTERRUFPT

FFRAME I8 ZFRO, WAS PREVICUS ONE ALSO 7ER0O?
FYESy IGNORE LEADTNG RLANK FRAMES

iNOy DONE WITH THIS ELOCKs MARK WITH O FRAME
FINCREMENT READFR FRAME COUNTER

sCLEAR READNFR ACTIVE FLAG

FACT FOINTS TO BEGINNING OF RUFF2?
;GO0 WRITE A RLOCK ON MAG TAFE

FRESTORE CARRY AND ACCLIMUL ATORS

FENARLE INTERRUFPTS
SRETURN TO INTERRUPTED PROGRAM

FREAIER SAVE AREA: ACl
FCARRY SAVE LOCATION

SADNRESS OF RUFF2

FREADFR FRAME COUNTER

FLAST FRAME TNFUT FROM READERs USED IN TGNORTNG
i LEADNING RLANK FRAMES

SERVICE ROUTINE

ISAVE ACO ANDN ACI TN MTA GAVE ARFA

FSAVE CURRENT HMAGK
iCLEAR MAG TAFPF ACTIVF FLAG

;LOAD RETURN ANNRESS INTO AC3

FGET NEW MASK

FMSKO ANDI TNTEN

FUFTIATE CURRENT MASK SAVFE

FAFPPEND CARRY TO LOW ENIN OF RETURN ADNRESS
FSAVE RETURN ADNRESS AND CARRY

FSAVE ACH

FREADN MAG TAFPE STATUS
FCHECK FOR BERRURS

FFETCH READER FRAME CUUNTER

1-43 :
PROGRAMMING EXAMPLES

EXAMPLE THREE (Continued)

MTADS:

MOREM:

MORER:

ERROR:

MSAVO:
MSAVL:
MSaAV3:
MSavC:
MESAUM®

MMASK

wa Az ws

MWRIT:

BLKSZ:
WRCOM:=
LBTAD:
ERCOM:

MOV
JIMF
NIOC
ns7
JMF

LDa
MOVZKR
STA
LDA
LIA
L0A
DORC
STA
LA
INTEN
JMF

DIE
JER
JIMP

INTDE
NIOS
182
INTEN
LLiA
STA
JMF

HALT

OO OO0

47

Qr0yQ7ZH
MOREM
MTA
RECNT
MORER

QrM8AVC
0v0

0 MSAVC
1y MSaVIL
3y MBAVI
O MSAUNM
Qs CFU

0 CMASK
0y M8AVO

eaMs AV

1sMTA
MWRIT
HTADS

FTR
RACTY

Oy ARUF2

0922

MTALS

FMORE WRITING TO Do?

SYES

iNOs CLEAR MAG TAFF

SDECREMENT AND CHECK REANER BLOCK COUNTER
FMORE READTING TOQ D0

FOIGMTISR MTA INTERRUFT
FRESTORE CARRY ANDN GET UP REFTURN ANDRFSS

FRESTORE ACY

FRESTORE ACZ

FGET FPREVIOUS MASK

FMSKO AND INTEOS

FRESTORE MASK SAVE LOCATION
FRESTORE ACO

FENARLE INTERRUFTS

FRETURN TO INTERRUFTED PROGRAM

FREAD ANNRESS OF NEXT WORD TO WRITE FROM RUFF?
G0 WRITE NEXT RLOCK ON MAG TAFE
iG0 DNISMISS TNTERRUFT

FMAKE SURE READER STARTED ANI' FLAG SFT TOGETHER
iSTART REAIER

FSET READER ACTIVE FLAG

SREINITIALIZE RUFF2

60 NISMISS INTERRUFT

SERROR FROCESSING WOULD NORMALLY GO HFRFE
iMTA SAVE AREA: ACO

iACl

FAC3

FRETURN ANNRESS AND CARRY

FCURRENT MASK

FMASKS QUT MTA» FPTFs TTIs AND TTO

MWRIT WRITES A RLOCK QF DATA IN MEMORY ON MAG TAFE TIRIVE ©
SIZE OF RBRLOCK TS -BLK&Y
ARDRESS OF FIRST WORD OF RLOCK IS CONTAINED IN ACI ON ENTRY

nae
STA
LIA
nac
LUA
INTLS
Loas
1sZ
INTEN
LA
ADDZ
SUE
STA
AMF

~144
50

0

70

1+MTA
12LSTALD
1y BLKGZ
1474
Oy WRCOM

Oy MTA
MACTY

OsRFCNT
1+0s8NC
Qs0Q
Qs RFCNT
0s3

il0Aal MEMORY ANNRESS COUNTER

FSAVE LAST ADNRESS USED IN WRITING TO MAG TAPF
FFETCH NEGATIVE RLOCK SIZE

FLOAD WARD COUNTER

FFETCH WRITE COMMAND .
FMAKE SURF MAG TAFE STARTEDR AND FL AG SET TOGETHER
FINITIATE WRITE OFERATION

FSET MAG TAFE ACTIVE FLAG

FNOW UFNIATE REANER FRAME COUNTER
FOHECREASE IT RY RLOCK SIZF

$IF RFONT WAS < BLKSZ, SET RFCONT TO O
FSAVE NEW VALUFE

FRETURN TO CALLFR

F(NEGATIVE) ERLOCK SIZF OF 100 DECTMAL
FWRITE COMMAND (SELECTS DRIVE 0)

FLAST ADDRFSS USED IN WRITING TO MAG TAFF
FERASE COMMAND (SELECTS DRIVE O)

I-44

EXAMPLE THREE (Continued)

MTAAR RESTARTS MAG TAFE AFTER FPOWER FATL
SEVERAL INCHFS OF TAFF ARE ERASEDs THEN THE RECORD
WHICH WAS RFING WRITTEN WHEN FOWER FATLED IS REWRITTEN

-z as en

MTAAR: LDA 0sERCOM FERASE SECTION OF TAFE

DOAS OyMTA
SKFION MTa . SWAIT TILL MTA DONE
JMF -1

Loa 0sRFCNT FCET RFCNT RACK TO ITS PRIOR VALUE
LIa 1,BLKSZ

SUR 1,0

sThA 1sRFONT

LA 1+L87AD FJFETCH ADNRESS OF RECORD TO KF REWRITTEN
JMF MWRIT 76O WRITE RECORD (MWRIT RETURNS DIRECTIY TO
FAUTO-RESTART CODE)

H CHARACTER RUFFERS

RUFF = .BLK 112 ‘ FALLOW FOR 72 CHARACTERS + CR + LF
RUFF2: .RLK 1120 FALLOW FOR UF TO 74%8=592 FRAMES

4 INTERRUFT DISFATCH TARLE

IDTAR: SIH FOEVICE CONE O
SIH
SIH
SIH
SIH
SIH
SIH
SIH v
TTISR FNEVICE . CODF 10
SIH
FTRSR SUEVICE COIFE 12
PTPSR DEVICE COnE 13
SIH
SIH
SIH
SIH
SIH
SIH
MTASK SDEVICE CODE 2
SIH
SIH
SIH
8IH
SIH
SIH
SIH
SIH
SIH
SIH
SIH
SIH
STH
SIH
SIH
SIH
STH
SIH
SIH
SIH
SIH
SIH
SIH

TTI

i

PTR
FTF

84

= MTA

2

1-45 PROGRAMMING EXAMPLES

EXAMPLE THREE (Continued)

SIH
SIH
SIH
SIH
SIH
SIH
SIH
SIH
SIH
SIH
SIH
SIH
SIH
SIH
SIH
SIH
SIH
SIH
SIH
8IH
SIH c ‘
SIH FOEVICE CODE 77

LEND START

1-46

EXAMPLE FOUR

Example Four performs the same functions as
Example Three. The majority of the interrupt
handling functions are accomplished using the
VECTOR instruction (VCT) and the stack manipula-
tion instructions of the ECLIPSE line of computers.
Stack context is changed from the (possible) user
stack to a '""systems' stack when a base level inter-
rupt occurs. Other nested interrupts do not

EXAMPLE FOUR

require a stack context change as the active stack
is the systems stack.

Interrupt dismissal involves returning to a lower
level service routine using the POP BLOCK in-
struction (POPB) after checking to determine the
return is not to base level. If the return is to
base level, the RESTORE instruction (RSTR) also
effects a stack context change to reactivate the
user stack.

FOR USE WITH THE ECLIFSE COUMFUITER

Lo o
; KRESERVED SVORAGE LOCATIONS - CANNOT BE RELOCATEL
0 SFC STORED HERE ON INTERRUFT
v 1HAE 1HAND SINTERRUFT HANLLER ALLRESS A
v GCHA® SYSER PSYSTEM CALL HANLLER ADURESS (NOT USED HERE)
~ FFHAL SYSER FSPRUTECTIUN FAULT HANLLER ALLRESS (NUT USED HERE)
v. USF s USTK-1 FADLURESS OF 10F OF VECTOR STACK
‘“ CMASK: 0 FCURRENT MASK SAVE LUCATION
N\ YSL USTRK~1+VSLEN FVECTOR STADK LIMLT
~N USFHAT SYSER JUECTUR STACK FAULT HANULER ALLRESS
; ARKITRARY FAGE ZERO STORAGE LUCATIONS FOR 1HLS EXAMPLE
° KSTAlT RSTRT FAUTO-RESTART ADDRESS
v GYSER: HALTA O STHIS EXAMFLE DOES NOV HANLLE SYSTEM CALLS,
; FROTECTION FAULTS, OR VECTOR STACK FAULIS
T paCIV: 0 FFUNCH ACTIVE FLAG
O RACTV: O FREALER ACTIVE FLAG
3 MACTV: 0 FMAG TAFE ACTIVE FLAG
LOG 20 FAUTOD-1NCREMENTING LUCATIONS
RUFF-1 FEIRST INDEX INTO FIRST CHARACTER BUFFER
RUFF-1 JSECONDI INLEX INTO FIRST CHARAUTER RUFFER
BUFF2-1 FINUEX 1NTO SECONL CHARACTER BUFFER
LOc 401
; VECTOR STACK
;
; LBEFINE THE VECTUR STAUK LENGIH
VSLEN = S%6+4 JALLONSG FOR &6-WORD BLOCKS FOR UF 10 5 INTERRUFI
§OLEVELS (171 FIPs MlAs FIRy FFL) FLUS ROOM 10
i SAVE USER S1ACK FARAMETERS (LUCATLIUNG 40-43)
YSTK 2 LJELE USLEN+12 FRESERVE STACK AREA (ALLOW 11 EXTRA WORBS 1IN
5 OCASE UF STACK UVERFLUW)
; “MALNY FROGRAM
START: 1ORST JCLEAR 170 DEVICES
LUa OsRWIND FREWIND MAG 1AFE
DUAS O MTA
SURZL 00 FSET ACO 10 3
LUES 0sCFU IMASK OQUT ITO (BIT 1%) AND TURN ON INTERRUF1S
3TA OrCMASGK JSAVE CURRENT MASK

1-47

Rev. 01
PROGRAMMING EXAMPLES

EXAMPLE FOUR (Continued)

CALC: AlD Osi FSIMULATE USEFUL COMPUTATION
SUR 142 i (MAIN FROGRAM MAY USE A STACK OF 115 UWN)
INC 213
NEG 3:0
182 Loc
JMF CaLt
JMF CALC
Lac: 0
PWIND: 10 FREWIND COMMAND (SELECTS DRIVE 0)
H INTERRUFT HANDLER
THANL: 187 LEVEL FHAG RASE LEVEL JUST REEN INTERRUFTEL?
JMF NSCH NG
yeT GVTAR SYESy VECTOR WITH FOSSIELE STACK CHANGE
NGCH: VeT VTAHK JVECTOR WITH NU STACK CHANGE
t COMMON INTERRUFT L1ISMISSAL
HisMs: LuUA 15 LEVEL FGET CURRENT INTERRUFY LEVEL
SRI 1s1 FDECREASE 1T RY 1
FUF 0:0 FGET OLD MASK
HORC OsCFU FRESTORE OLI MASK AND LISARLE INTERRUFIS

S1aA Oy CMASK FRESTORE MASK SAVE LOCATION
STA 1sLEVEL FEET NEW INTERRUFT LEVEL
CUMT 12198NK FGOING BACK YO RASE LEVELY

JMF .3 FYES
INTEN iNOy LEAVE VECTOR STACK AS 15 WILL Kb
FUFER i RETURNING 70 SOME OQTHER SERVICE ROUTINE
INTEN FRESTORE MAIN FROGRAM STACUK ON WaY HAUK 10
KSTR i BABE LEVEL (l.Ek.s MALIN FROGRAM)
LEVEL: -1 FINTERRUFT LEVEL CUUNTER
§ FOWER FALL/Z7AUTO-RESTART SERVICE ROUTINE
FELCTS BPFLYSR SALLRESS OF POWER FaAll SERVICE ROUTINE (FUSH EBLY = D)
G ¥ CLHON' T BUTHER CHANGING MASKs SINCE INTERRUFPIS
5 OWILL EBE TURNED OFF IMMEDIATELY AT FFLSR)
FELSR: INTIG sD1SARBLE INTERRUFIS
SKFDZ CRU 515 THLIS REALLY A FOWER FALLY
JMF REAL FYES
182 FFONT NGy COUNT THIS BECEFTION
JME DIGMS G0 DIGMISS INTERRUFT
HaL1a O FHALY LF 17 HAFFPENS 452046 TIMES
REAL $ Lia Oy JUMF FSET UP RESTART INSTRUCTION IN LUCATION O
STA 050 .
SKFUZ CFU FLOOF HERE WALTING FUR PUWER 10 GU DOWN
JMF -1
JMF RSTOR 31F 11 COUMES RACK URy GO AHEAL AND RESTORE

RETRT L Liey Qe FALTY FWAS 1P ACTIVE?Y
MOVE OsQrSZR
N1OS FTF s1F YES, RESTART 11
LA Oy RACTY sWas FTR alLTIVE?
MOVE 0s09SER
NIQ5 FTR s1F YESs KRESTARYT 11
LA Oy MACTY sWAS M1A ACTIVE?
MOVE Qs 0sSZKR .
JOR gaMTAR FIF YESy GU RESTARYT 11

I-48

EXAMPLE FOUR (Continued)

RETOR: JMF DISMS G0 RESTORE ANl KESTART FROGRAM
FFCNT: O FCOUNTS NUMBRER OF SPURICUS INTERKUFIS FRUM LDEVICE O
JUMF 2 JMF GRSTAL FINSTRUCTION FOR JUMFING 10 RESTART COULE

AMTAR: MTAAR FANURESS UF ROUTINE 70 RESTART MAG 1AFE

ROUTINE 70 HANDLE SFURIOUS INTERRUFTS

-a

SIH: DsZ LEVEL SDECREMENT INTERRUFPT LEVEL COUUNIER
JMF 3}
STA 0y SAVED 1 SAVE THREE aCCUMULATORS
STA 2y GAVEZ
SThA S+ 8AVED

INTA © FREAL A LEVICE COLE
L& 2yNSCGH+1 FGET ALDRESS OF VECTOR TAKLE
AL 0y 7 FINLEX INTO VECTOR VAKLE
LUA 90,2 SGET TABLE ENIRY
LIA 3,ASIH 516 THIS A& VALIL DEVICE?
SUK$ 2r398ZR ,
JMF NEWLY SYESs FORGET AKOUT SFURIOUS INTERRUFTs GO LO NEW ONE
LA Z,NIOCO 51HIS DEVICE UNLEFINEDs VRY 10 GLEAR 11
AL 092 FFORM FPROFER NIOC INSTRUCTION
LIA 3,SKIF JFORM FROFER SKPDN INSTRUCTION
Al 013
LUA O,TRIES §INLTIALIZE COUUNTER FOR NUMKER OF TRIES
1RY: xe1 oz FEXECUTE N1OC INSTRUCTION
XCT 3 JEXECUTE SKFDN INSTRUCTIUN
JMF CLEAR FOEVICE 1S CLEAK, GO D1SMISS
INC ©0:0,5ZK FCOUNT THIS TRY
JHFTRY $G0 TRY AGAILN
HALTG 2 FHALT SHOWING FUTILE NIOC INSTRUGTION

NEWLV: LDaA 0y 5AVED FRESTORE ACCUMULAIORS
LItA 21 85AVER
LA SrGAVES
JHF ITHANI FGO 10 INTERRUFT HANDLER

CLEARS LDA O;SﬁUhd sREGTORE ACCUMULAITORS
LA 2y BAVED
L LA 315AVED

INTEN SENARLE INTERRUFIS
JHE [LIs) SRETURN 10 INTERRUFTER FROGRAM
SAVED: O JSAVE AREA FOR SPURIOUS INTERRUFY HANULEF
SAVER2: 2
SAVE3: 3
ASTH: SIH SAUDDRESS OF SPURIOQUS INTERRUFPT HaANULER
N1QCOT NIODC O SORELETAL N1OG INSTRUCYION
SKIFz SKFLN © FORELETAL SKPDON INSTRUCTION
TRIES: -4000 FTRY CLEARING DEVICGE 2048 TIMES REFORE GIVING UP
H 1ELETYPEALNPU] SERVICE ROUTINE
11ICT: BTTISR FTITI LHEVICE CONTROL TaRLE (FUSH K11 = 1)
K FMASKS OUT 1TI, 1T0
T1ISKRs: :
READC R HiIAC 0s171 FREAL THE CHARACTER AND CLEAR LUNE
L. LA 30177 sDROF FARITY KIT
AND 390
STORE?T STA 02320 FSTORE CHARACTER IN RUFF

LUA 3:CNTLR FCHECK FOR CONTROL K
SUB% Xs0s SNR)
LUA OsKELL FECHU CONTROL K KY RINGING KELL

I-49
PROGRAMMING EXAMPLES

EXAMPLE FOUR (Continued)

CRET =

FTILG:

ciz7zz:
CRe
LFs
CNTLR:
KELL =

ARUFF 2
MAX:

CHONT =
FCCNT =
FRONT®
NRFT 2

CCHAR®

SKFRZ
JMF
LOAS
LA
SUR%
JMF
nsz
JMF
MOy
JMF
LA
STA
SKFRZ
JMF
haas
L&
MOVE
JMF
LA
LA
SUR
STA
LA
574
574
S5TaA
SUR
INTRS
Lnaag
182
INTEN
5TA

JMF
DISMS

RUFF-1
110
110

0

i0

10

0

1T0

a1
05170
I5CR
3109 SNR
CRET
CHUNT
17108
KYXe
STORE
GylF
Q020
11a

!
Q170
OsFCUNY
W EROER-VA

s 20
SyARUFF
390

Qs FCCNT
O MAX
Gy CHONT
L 20
3921

[P XX¢]

QsFTF
FACTY

O COHAR

W.+1

FTTO READY?

sNOry TRY AGAIN

IYESy ECHO CHARACTER

115 CHARACTER & CARRIAGE RETURN?

FYESy GO FROCESS 11

NGOy DECREMENT CHONT 10 CHECK FOR LINE QUERFLOW
iNO UVERFLOW, GU LISMISS INTERRUFI

SLINE 1S FULL, LOAL & CR AND

i JUMF BACK 10 INSERT 1T INTO BUFF

FALD LAINE FEED 10 RBUFF

FWALT UNTIL 170 REALY

FGIVE LINE FEED
FWALT 1F PUNCHING OF FREVIOUS LINE 1% NOT LUNE

FCALCULATE NUMERER OF CHAKACITERS 1IN BUFF

FINITIALLEZE FUNCH CHARAUTER COUNITER

FREINITIALLZE CHARACTER BUFFER:

INITIALLZE CHARACTER COUNTER

INITIALLZE CHARACTER RUFFER FOINTERS 1IN
AUTO-INCREMENTING LOUCATIONS 20 AND Z1

FFIRST FUT QUT 8 FRAMES OF RLANK LEARER

sMARE SURE THAT FUNCH STARTEL ANDN FLAG SET TOGETHER
FOUTFUYT NULL CHARACIER

FSET FUNCH ACTIVE FLAG

- v e

FSAVE NULL AS CURRENY CHARACITER

GO DISMISE INTERRUFT

FMASK FOR LELETING PARITY K11
FCARRIAGE RETURN

FLINE FEEL

FCONTRUL K

FTELETYFE RELL

FANDRESS OF CHARAUCTER BUFFER - 1

FMAXIMUM OF 72 CHARACIERS INFUT FER LINE
FCHARACTER COUNTER (COUNTS LOWN FROM MaAX)
FFUNCH CHARACTER COUNTER

FFUNCH REFEAT COUNTER

sNUMBER OF TIMES 10 FUNCH EACH CHARACIER
FCURRENT CHARACTER SAVE LUCATION

I-50

EXAMPLE FOUR (Continued)

FTPCT:

FTFSHRS

GCHAR

CONTF :

NEWC:

SAMEC:

FTRIKS

FTFOG:

RRBCNT =
ARUF 22

s

FTIRCT:

FTRGR:

FAFER TAFE FUNCH SERVICE ROUTINE

OFTHSR
7

INTDE
SUR
STA
INTEN

LA
LIA
SUR
JMF
bsz
JMF
LIA
STA
Lsz
JMF
NIOC
JMF

LLtA
S1A
INTIS
Loas
182
INTEN
JHF

182
LbA
ALICE
JMF
INTDS
NIOS
187
INTEN
L.lA
s7a
JMF
JMF
DISMS

0
RUFF2-

0s0
QyFACTY

0y CUHAR
ZsCNTLR
Or3»8NR
FTRDK
FRONT
SAMEC
Qs NRF1
Oy FRCNT
FCCNT
NEWC
TP
FTFUS

Q@21
Os CCHAR

OyFTF
FACTV

FTFDS
KECNT
Qs RECNT
3 5ZR
CUONTF

FTR
RACTY

Os ARUF2

1

iFTF DEVICE CONTROL TARLE (FUSH RIT = 1)
FMASKS OUY FTFy 1TI» ANDI 170

sDISARLE INTERRUFTS KEFUORE 11'S 100 LATE
sCLEAR FUNCH AUTIVE FLAG

FENARLE INTERRUFIS FOR REAL

FGET CURRENT CHARACTER

18 11 CONTROL R?

i (ACS BECOMES O 1F CHARACTER 1S CONTROL R)
IYESy INFUT FROM READER

iNOy DECREMENY FUNCH REFEAT COUNITER

FG0 FUNCH SAME CHARACTER AGALN
SREINITIALLIZE FUNCH REFPEAT COUNTER

SODECREMENT PUNCH CHARACIER COUNIER
G0 FUNCH NEW CHARACIER

FALL DWUONE» CLEAR FUNCH

FG0 DISMISS INTERRUFT

FGET NEW CHARACTER

FUPDATE CURRENT CHARAUTER SAVE

iMAKE SURE FUNCH STARTEL AND FLAG SET 10GETHER
FOUTFUT CHARACTER 10 FUNCH

SSET FUNCH ACYIVE FLAG

G0 BISMISS INTERRUFI

INCREMENT REALER BLOCK CUOUNTER

$I8 THIS THE FIRS1 FIR KEQUEST?

F(SKIF IF ALO = 19

sNOy CONTINUE FUNCHING WITH NEXT CHARACIER
FMAKE SURE KREALER STARTED AND FLAG SET T0GETHER
iSTART REALER

FSET REALER ACTIVE FLAG

FINITIALLIZE SECONIN CHARACTER RUFFER

FUSE AUTO-INCREMENT LOCATION 22 A% INMEX
FCONTINUE FPUNCHING W1ITH NEXT CHBRACIEKR

FGU BISMISS INTERRUFY

FNUMBER OF ERLOCKS LEFT Y0 READN FROM FIR
FADDRESS OF SECOND CHARACTER BUFFER - 3}

FAFER TAFE REAUER SERVICE ROUTINE

GFTRSH
63

INTDS
SUR
S1A
INTEN
HIiAC
LA
STA
HOV=
JME
STA
1527

[¢XR0) ‘
OyRACTY

OyFTR
2y CHECK
O» CHECK
020 SNR
ZERQF
Qs¥22
RFCNT

FFTR DEVICE CONTROL TABLE (FUSH EIT = 1)
FMASKS OUY PIRs Mlas TTL: 170

iDISARLE INTERRUFTS
sCLEAR READER ACTIVE FLAG

FENAKLE INTERRUFTS

sREAL FRAME AND CLEAR LOUNE

FGET FREVIOUS FRAME READR

FSAVE NEW FRAME

18 NEW FRAME = 07

tYES

FNOy SAVE 17 IN RUFFZ

s INCREMENT READER FRAME COUNTER (NEVER SKIF)

-5
1-o1 PROGRAMMING EXAMPLES

EXAMPLE FOUR (Continued)

SPTR: INTIS FMAKE SURE READER STARTED ANL FLAG SET TOGETHER
NIOS FPTR FSTART REALER FOR NEXT FRAME
182 RACTV FSET READER ACVIVE FLAG
INTEN
JMP FIRDS iGO DISMISS INTERRUFT
ZEROF: MOU: 3y39y8NR FFRAME 18 ZEROy WAS FREVIOUS UNE ALS0 ZERU?Y
JME SFTR FYESy IGNORE LEAUING KLANK FRAMES
G714 0,022 FNOs LOUNE WITH THIS KLUCKy HMARK WITH O ¢ RAME
152 RFONT F INCREMENT REAUER FRAME CUOUNTER
LA 1sRRUF2 FAC1 POINTS 10 BEGINNING UF RUFFY
JER MWRIT G0 WRITE A RLUCK ON MAG TAFE
FIROG: MF .+l 60 DISMISS INVTERRUFT
HI8MS
BRUF 22 RUFFZ FABLRESS OF RUFF2
RFCNT2 O FREANER FRAME COUNITER
CHECK: 9D FLAST FRAME INFUT FROUM REAUER, USED 1IN 1GNORING

i LEADING BLANK FRAMES

H MAG 1AFE SERVICE ROUTINE
MTACT: OMTASR M4 LEVICE CONTROL TARLE (FUSH RIT = 1)
43 SMASKS OUT M1Ay 1T1s 1TQ
MTASR: INTOS s HISARLE INTERRUFI1S
SUR 0s0 FCLEAR MAG TAFPE ACTIVE FLAG
S1A Oy MACTY
INTEN FENARLE INTERRUFTS
uIia OsMT1A FREAD MAG TAFE S1ATUS
MOVLy 0+0,5ZC FCHECK FOR ERRORS
JME ERROR

L.la OsRFCNT FFETCH REALER FRAME COUNTER
MOV=s 0,0s52R FMORE WRITING 0 nO?

JMF MOREM FYES
NIOC M1A NGy CLEAR MAG TAFE
nsz RBUNT FUECREMENT AND CHECK REAUER RLOCK COUNYER
JMF MORER FMORE READING 10 L0
JHF MTALS G0 DISMISS INTERRUPT
MOREM: LIE 1 MTA SREAL ALLRESS OF NEXT WORD 10 WRITE FRUM RUFFZ
J8R MWRIT F60 WRITE NEXT BLOUK ON MAG TAFE
JMF MTADS G0 DISHMISS INTERRUFTY
MORER:z INTDS FMANE SURE REALER STARTED ANI FLAG SET V1O0GETHER
NIOS TR sSTART REAIER
157 RACTY FSET REALER ALTIVE FLAG
INTEN
LIMA Os ARUF 2 FREINITIALYIZE RUFFZ2
87A Qe
MTALSGT UMF @.+1 FG0 DISMIGS INTERRUF
LISME
ERROR: HAlLIA © FHALT SHOWING HMAG TAFE STATUS WORD

i (ERROR FROCESSING WOULL NURMALLY GU HERE)

I-52

EXAMPLE FOUR (Continued)

- an s

MWRIT: DOR
S5TA
LA
nac
LA
INTDS
oas
182
INTEN
LA
ALDZ
SUR
STA
JMF

BLKSZ: -—-144
WRCOM: 50
LSTAll: 0
ERCOM: 70

U LR 1Y

1+M14
12LETAL
1sBLKSZ
1:MTA
Qs WRCOM

0sMTA
HALTY

O RFCNT
120+ 5NC
020
OryRFONT
093

MWRIT WRITES A BLOCK OF DATA IN MEMORY ON MAG TAFE LURIVE O
SIZE OF RLOCK 1S -RLK&Z
ADDRESS OF FIRST WORLD OF RLOCK 1S5 CONTAINED IN ACL ON ENIRY

sLOAD MEMORY ADDRESS COUNTER

FSAVE LAST ADDRESS USED IN WRITVING 10 MaAG TAFE
FFETCH NEGATIVE RLOCK S1ZE

sLOoAD WORD COUNTER

FFETCH WRITE COMMAND

FMAKE. SURE MAG TAFE STARTEDR AND FLAG SET TOGETHER
FINITIATE WRITE OFERATION

FSET MAG TaFE ACTIVE FLAG

INOW UFLATE READER FRAME COUNTER
sHECREASE 17 RY RLOCK SIZE

FIF RFCNT WAS < RLKSZy SET RECNT T0 Q
FSAVE NEW VALUE

FRETURN 10 CALLER

FANEGATIVE) RLOCK SIZE OF 100 DECIMaL
JWRITE COMMAND (SELECTS DRIVE O

FLAST ADDRESS USED IN WRITING 10 MAG TAFE
FERASE COMMANL (SELECTS DRIVE O)

M1AAR RESTARTS MAG 1APE AFTER FOWER FALL
SEVERAL 1INCHES OF YAFE ARE ERASEDy THEN THE RECORD
WHICH WAS REING WRITTEN WHEN FOWER FAILED 15 REWRLITEN

MIaAR: LIA Os ERCOM FERASE SECTION OF Take
noAaSs osMia
SKFON MTA FWALT TILL MTA DONE
JMF !
LA Qs RFONT sSET RFONT RACK 10 178§ FRIUR VALUE
LDA 1y BLKEZ
SUR 1s0
814 Ly RFCNT
LuaA 1 LETAD FFETCH AaDURESS OF RECORD 10 RE REWRLITTEN
JMF MWRIT FG0 WRITE RECURD (MWRIT RETURNS DIRECTLY 10
FAUTO~RESTARYT COLE)
’ CHARACTER RUFFERS
HUFF: SEBLK 112 FALLOW FOR 72 CHARACTERS + CR + LF
BUFF2:s LBLK 1120 FALLOW FOR UF 10 74¥8=0L92 FRAMES
H VECTOR TABLE

VTAaks: GERFLCT
SIH
SIH
SIH
SIH
SIH
SIH
SIH
G11ICT
SIH
EETRCT
WETRCT
SIH

HSIH
5IH
5IH
SIH
GIH

FALDRESS UF CONTROL TABLE FOR FOWER FALL

FADLRESS (

-

F 1T DEVICE CONTROL V1ARLE

FALRDRESS OF FIR DEVICE CONTROL 1ABLE
FADDRESS OF FTF REVICE CONTRUL VaRLE

I-53 PROGRAMMING EXAMPLES

EXAMPLE FOUR (Continued)

EMIACT FALDRESS UOF M1A DEVICE COUNTROUL T1ARLE
SIH
SIH
SIH
SIH
SIH
SIH
SIH
SIH
SIH
SIH
SIH
SIH
SIH
SIH
SIH
SIH
SIH
SIH
SIH
SIH
SIH
SIH
SIH

SIH
SIH
SIK
SIH
SIH
SIR
SIH
SIH
SIH
SIH
SIH
SIH

SIH
SIH
SIH
SIH
SIH
SIH
SIH
SIH
SIH
SIH

LENL STARTY

I-54

SECTION Il

TERMINALS

@ TELETYPES

@ DGC DISPLAY 6012

TERMINAL

This page intentionally left blank

INTRODUCTION
TO TERMINALS

A terminal is a device through which the computer
and its operator can interact. It has two indepen-
dent parts, a keyboard, and a display or printer.
The operator sends information to the computer
through the keyboard, and the computer responds
to the operator through the display or printer.

Characters that are transmitted between the com-
puter and the terminal are coded in ASCII* (see
Appendix C) and transmitted asynchronously. Each
character is transmitted serially bit by bit between
the computer and the terminal over a communica-
tions channel, at rates ranging from 110 to 4800
bits per second or "baud'.

Although the terminal is two separate devices, the
manner in which the devices interact with one an-
other and the computer depends on the communica-
tions channel linking them. If the channel consists
of one line from the keyboard to the computer and

*American Standard Code for Information Interchange.

II-1 of 16

a second independent line from the computer to

the printer or display, the two halves of the ter-
minal can operate independently. This full use of
the terminal is termed ' full -duplex operation' .

If only one line connects the terminal to the com-
puter, the keyboard and the computer must share
this line; thus only one of the two halves of the
terminal can be operating at any one time. This
use of a single line channel is termed 'half-duplex
operation' .

When a terminal operates in full-duplex, the com-
puter must ""echo' the information received from
the keyboard if it wants that information to be
shown on the display or printer. However, when
operating in half-duplex, the keyboard transmits
the information to both the computer and the dis-
play or printer.

TERMINAL

This page intentionally left blank

TELETYPES

SUMMARY
MNEMONIC (FIRST CONTROLLER) ACCUMULATOR FORMATS
INPUT ... i TTI READ CHARACTER BUFFER........... (DIA) _
OUT PUT . .. ittt ittt e ennnnnnn TTO
DEVICE CODE (FIRST CONTROLLER) cpRcTon e]
6 1 12'13 14 15
INPUT -+t oteteeeeieeeaneeneeananns 10g
OUTPUT - vt 11g ~ -OADCHARACTER BUFFER.......... (DOA)
MNEMONIC (SECOND CONTROLLER) CHARACTER OR COMMAND 7
INPUT ottt ittt ettinneannnnnns TTI1 o'l 2 3'4 5 6'7 8 9ilol||112=|3'|4'|5
OUT PUT ... ittt ittt teteineeenas TTO1
DEVICE CODE (SECOND CONTROLLER) S, C AND P FUNCTIONS
1830 21 014 AP 50g
51 S Set Busy to 1, Done to 0 and either load
OUTPUT « + v eveteeeeeeeneneeaeannen, 8 the Input Buffer or write a character.
PRIORITY MASK BIT C Set both Busy and Done to 0 and ter-
1 5 8 P 14 minate all data transfers. If issued
15 before transmission is complete, partial
OUT PUTttt ittt eeetnnnenns character codes are received.
CHARACTERS/LINEovvienrrrnennnnn. 72 p No effect.
LINES/INCH.....ovvverennn. e 6
DATA TRANSFER RATE
MAX (CHARACTERS/SEC)
33AND 30 ... ittt e e 10
R 15

INTRODUCTION

The Teletype provides for two-way communica-
tions between the computer and the operator. The
keyboard is the input device and the printer is the
output device. All the exchanges of data between
the keyboard and the computer and between the
computer and the printer utilize a subset of the
128-character alphanumeric ASCII code shown in
Appendix C.

In addition to a keyboard and a printer, certain
models of the Teletype terminal are equipped with
a paper tape reader/punch combination. Such
terminals are designated as Automatic Send/
Receive (ASR) terminals. Those which are not so
equipped are designated as Keyboard Send/Re-
ceive (KSR) terminals.

-3

Three distinct Teletype models are available from
Data General Corporation: the model 33, the mod-
el 35, and the model 37. Both the models 33 and 35
operate at a data transmission rate of 10 char-
acters per second (110 baud) while the model 37
operates at 15 characters per second (150 baud).

All three terminals print up to 72 characters per
line with 6 lines to an inch. Both the models 33
and 35 printers utilize 8 1/2 inch wide paper while
the model 37 requires 9 1/2 inch wide paper. The
33 and 35 are upper-case only terminals while the
model 37 is full upper-and lower-case. Other dif-
ferences among the various models may be found

in the Operator' s Reference Manual (015-000034).

TELETYPES

INSTRUCTIONS

The following instructions and timing information
are for the terminal when it is used in conjunction
with a 4010 or 4077 controller.

The controller contains an 8-bit Input Buffer and
an independent 8-bit Output Buffer.

The controller's Busy and Done flags are con-
trolled using two of the device flag commands
as follows:

f=S Sets Busy to 1, Done to 0 and either
reads a character into the Input Buffer
or transfers the character in the Out-
put Buffer to the printer or the punch.

f=C Sets Busy and Done to 0, thus stopping
all data transfer operations. A Clear
command issued during a transfer will
result in the partial reception of the

code being transferred.

f=P No effect.

Since the terminal is actually two devices, both a
Busy and Done flag are available for input opera-
tions and a separate set of Busy and Done flags
are available for output operations.

Rev. 04

I1-4

READ CHARACTER BUFFER

DIA<f> ac,TTI

IO{IIII Ac [o 0] F

o' 1 2 3'4 5 6'7 8 9 10 N '3

0 01 0 00
14 15

The contents of the Input Buffer are placed in bits
8-15 of the specified AC. Bits 0-7 of the speci-
fied AC are set to 0. After the data transfer, the
controller's Input Busy and Done flags are set ac-
cording to the function specified by F. The format
of the specified AC is as follows:

CHARACTER OR COMMAND
{ 1 1 b [l 1

9’10 1l 1213 14

15

Name Contents

Reserved for future use.

Parity bit selected at the
terminal; even, odd or
none.

8 Parity

9-15 The 7-bit character or
command read from the

Input Buffer.

Character

LOAD CHARACTER BUFFER

DOA<f> ac, TTO

0 0 | 00 I]
} I N R R |
13 14 15

0.'1'
[4 5 6 7 8 9 0 Il I2

[Ac
{1 2 3=

[o0 1] F
T

Bits 9-13 of the specified AC are loaded into the
controller's Qutput Buffer. After the data trans-
fer, the controller's Output Busy and Qutput Done
flags are set according to the function specified
by F. The contents of the specified AC remain
unchanged. The format of the specified AC is as
follows:

JPARITY CHARACTER OR COMMAND
g o' o 1l 2T |31|4 15

Bits Name Contents

0-17 ———— Reserved for future use.

8 Parity Even, odd or no parity for
the T7-bit code.

9-15 | Character | The 7-bit character or com-
mand transmitted to the Qut-
put Buffer.

NOTE: If a 4077 controller is used,

the DOA instruction must be
accompanied by S (Start).

PROGRAMMING

Terminal

Since the terminal is actually two separate devices,
input and output are discussed separately.

Input

Neither full- nor half-duplex input operations have
to be initialized by the program. Striking a key
automatically transmits the corresponding charac-
ter to the controller. After the character is as-
sembled, the Input Busy flag is set to 0, the Input
Done flag is set to 1 and a program interrupt re-
quest is initiated.

The character can then be read by issuing a READ
CHARACTER BUFFER instruction (DIA). The Input
Done flag should then be set to 0 with either a Start
or a Clear command. This allows the next charac-
ter to initiate a program interrupt request when it
is fully assembled.

Output

A character is loaded into the Output Buffer of the
controller by issuing a LOAD CHARACTER BUF-
FER instruction (DOA). The character can then be
transmitted to the terminal by issuing a Start com-
mand, While the character is being transmitted,
the Output Busy flag is set to 1. Upon completion
of the transmission, the Output Busy flag is set to

0 and the Output Done flag is set to 1, thus initiating
a program interrupt request.

Each time a character is to be sent to the terminal,
the Output Buffer must be reloaded with a LOAD
CHARACTER BUFFER instruction. A sequence of
LOAD CHARACTER BUFFER instructions together
with Start commands is used to transmit a multi-
character message. The program must allow each
character to be transmitted before transmitting the
next character,

Paper Tape

ASR Teletypes are equipped with a paper tape
reader/punch. If the model is equipped with auto-
matic reader control (TDT), the program may turn
on the reader with the command DC2 and turn it off
with the command DC3 (see Appendix C).

Input

When the terminal is equipped with a paper tape
reader, the data input operation is similar to read-
ing codes sent from the keyboard. A Start command
causes the next eight bit code on the paper tape to

II-5

be loaded into the Input Buffer. Issuing a READ
CHARACTER BUFFER instruction will load the
contents of the Input Buffer into the specified ac-
cumulator. The sequence of a Start command and
a READ CHARACTER BUFFER instruction can be
continued until the entire tape is read.

Output

Output to the paper tape punch is accomplished the
same way as output to the printer is done. The
characters or commands output are punched on the
paper tape as well as being printed on the Teletype
output paper.

TIMING

On both the model 33 and 35, a character is avail-
able in the Input Buffer for 21.59ms after Input
Done is set to 1 before another character can over-
write the buffer. The corresponding time for the
model 37 is 9.17Tms. The difference in time is due
to the fact that both the model 33 and 35 transmit
10 characters/second while the 35 can transmit up
to 15 characters/second. If the paper tape reader
is in use, the program has 3.41ms to issue another
Start command to the reader after Input Done is set
to 1 if the tape is to be kept in continuous motion.

NOTE: If a 4077 controller is used, the
received data is double-buffered (
(holding register and receiver
shifters), so the program has

one full character time to remove

the received character.

Output timing for the printer and the paper tape
punch is the same on both the model 33 and 35.
The program has 4.55ms to transmit another
character in order to continue printing or punching
at the maximum rate. The time interval for the
model 37 is 3.33ms,

CONSIDERATIONS

Input

All models ignore the parity bit in the codes re-
ceived for printable characters. Both the model 33
and the model 35 also ignore the parity bit in the
command codes they receive, while the model 37
will not carry out the command if the parity bit is
incorrect.

When the terminal is operating in full-duplex, the
program must ""echo'' the characters if they are to
be printed at the terminal.

Rev. 04

TELETYPES

Half-duplex operation requires a protocol to be set
up between the computer and the terminal. The
Jprotocol should be formed to resolve any conflicts
over the use of the transmission line.

Output

When characters are sent to the models 33 and 35,

all lower case characters are printed as their up-
per case equivalents.

Half-duplex operation requires a protocol to be set
up between the computer and the terminal. The
protocol should be formed to resolve any conflicts
over transmission line use.

Since the mechanical motion initiated by a Carriage
Return may not be completed before the next char-
acter is ready to be printed, some programmers
igsue one or two NUL characters after a Carriage
Return. If this is not done, the next printable
character could be displaced from its correct
position.

When the last character position on a line is
printed, and no format control character is sent
to the terminal, all succeeding characters will
overprint the last character on the line until a
format control character is issued. If the pro-
gram issues a CARRIAGE RETURN which is not
immediately preceded or followed by a LINE FEED
command, the entire line will be overprinted.

PROGRAMMING EXAMPLES

The following examples show how characters are
passed among the computer, the teletype printer,
the teletype keyboard, the teletype paper tape
punch and the teletype paper tape reader. The
first example reads a character from the Teletype
keyboard, the second reads a character from the
Teletype tape reader, the third prints a char-
acter on the Teletype printer and, if the punch on
an ASR terminal is turned on, punches the char-
acter on the tape.

EXAMPLE 1

+ READ A CHARACTER FROM KFYROARD

SKFIN 771 FCHARACTER RUFFER L OADED YET?

JMF -1 iNO

LIAC 1»TTI sREAD CHARACTER AND CLFAR THE DONE FLAG
EXAMPLE 2

; READ A CHARACTER FROM FAFER TAFE READNFR

NIOS IR O 5START READER

SKFIDN 71 JFRAME RUFFER LOADED YET?

JMF .1 NG

DIAC 1:TTI IRFADN FRAME AND CLEAR THE DNONE FLAG
EXAMPLE 3

i FRINT AND/OR FUNCH A CHARACTER

SKFRZ TTO FFRINTEFR FREE?
JSMF -1 sNOs TRY AGAIN
[oas 1:TTO FFRINT CHARACTER

The subroutine shown in example 4 and called by

a JUMP TO SUBROUTINE instruction (JSR to
TTYRD,) illustrates both reading and echoing
characters on the Teletype, with Teletype inter-
rupts disabled. It uses ACO to store the character.

EXAMPLE 4
H SUBROUTINE TO READ ANDII ECHO TELETYFE CHARACTERSs INTERRUFTS DISARLED
TTYRD: SKFDN TTI iHAS CHARACTER REEN TYFED?
JiF .1 iNOs THEN WAIT
DIAC 0>sTTI IYESsy THEN READI CHARACTER ANDII CLEAR DONE
SKFBZ TT0 i1S TTO READY?
JMF -1 iNO» THEN WAIT
DOAS 0,770 FYESy THEN ECHO CHARACTER
JMF 0»3 FRETURN
II-7

TELETYPES

The teletype may also be programmed using the
program interrupt facility. This technique may
be useful in cases where a number of calculations
may be performed in the time between Teletype
characters. The routine shown in example 5 will
read a line and echo it on the Teletype using the

EXAMPLE 5
§ READ A LINE USING INTERRUFTS
«1.0C 0
0 FFC WILL BE STORED HERE WHEN AN INTEFRRUPT QCCURS
IHAND FADDRESS OF INTERRUFT HANDLER
.Lac 400
START: LDaA 1yRBUFFR SSET UF BUFFER POINTER IN
STA 1,23 i AUTO-INCREMENT LOCATION 232
LA 1sMAXLL SGET MAXIMUM LINE LENGTH
STA 1»CNTR FINITIALIZE LINE OVERFLOW COUNTER
SURZL is1 ISET ACl = 1
NOES 1,CFU FMASK OUT TTO AND TURN ON INTERRUFPTS
. i FROGRAM CAN DO USEFUL THINGS
- i WHILE LINE IS REING READ
HANG: LDA OsCNTR SWHEN NEED FULL LINE TO CONTINUE:
MOVE 0s0:8ZR 7 HANG UF HERE UNTIL
JMF 2 i READING IS ALl DONE
BUFFRz 777 FBUFFER BEGINS AT LOCATION 1000
MaxLl: 110 FMAXIMUM OF 72 CHARACTERS FER L INF
CNTR: 0 FLINE OVERFLOW COUNTER
IHAND: SKFDON TTI sMARKE SUREF TTI CAUSED THE INTERRUFT
HALT JERROR - GOME OTHER FERIFHERAL INTERRUFTED
STA 0,8AV0 iSAVE ACCUMULATORS THAT WILL RE USED
5TA 1+8AV1
RIAC 0sTTI FREAIl CHARACTER AND CLEAR DONE
STA 0,023 FSTORE CHARACTER TN RUFFFR
SKFRZ 770 FMARKE SURE TTO NOT RUSY
JMF .1
noas 0sTTO iECHO CHARACTER
LI 1:CR IS IT A CARRIAGE RETURN?
SUR+¥ 0s1:52R
JHF .4 FNO
SUEC 050 FYES» CLEAR ACO WITHOUT CHANGING CARRY
STA OyCNTR FZERO OUT CNTR TO INDICATE L INE DONE
JMF -+3
nsz CNTR iIF NOT A CARRIAGE RETURNs DECREMENT CNTR
JhF ouT sLINE NOT YET DONEs GO DISMISS
LA Oy TTHSK SLINE IS DONE
MSKO 0 FMASK OUT TTI (AND TTO) TO INHIBIT FURTHER INPUT
ouT: LbA 0s5AV0 FRESTORE ACCUMULATORS
LA 1»8aV1
INTEN s TURN INTERRUFTE RACK ON
JMF a0 SRETURN TO INTERRUFTED FROGRAM
SAVO: 0
Savle 0
CR: 213
TTMSK: 3

interrupt priority structure. It will read char-
acters into a buffer beginning at location 1000g.

It is terminated by either a carriage return or line
overflow. Line overflow is terminated by the value
of MAXLL (maximum line length).

DGC DISPLAY
6012

INTRODUCTION SUMMARY

The DGC Display 6012 is two separate I/O devices; MNEMONIC (FIRST CONTROLLER)
a console and an alphanumeric CRT display, shown INPUT ..ttt e i e it e i e TTI
below. The console comprises a standard 53- OUTPUT ..ottt ittt it i ieeinnnnnnns TTO

station teletypewriter style keyboard, a supple -
mentary 20-station keyboard and two switches.

The first switch has three positions labeled LOCAL, g\{JPTUI;rU’.I‘ """""""""""""""" 1(1)8
OFF and ON-LINE. The ON-LINE position con- | ~ T5 77 77 sorrrerrerrermreesreressecns 8
nects the terminal to the computer. LOCAL, used MNEMONIC (SECOND CONTROLLER)

primarily for testing the display, puts the terminal INPUT ..ttt i i e e i eee e TTI1
off line from the computer and connects the key- OUTPUT ..ttt ieeie i iieans TTO1

board to the display. OFF removes power from
the device. The second switch has three positions

labeled BUFFERED, PAGE and ROLL. Each posi- OUTBU | 208
tion of this switch selects the terminal's operational | 77 777ttt 8
mode. PRIORITY MASK BIT
: 151 24 0 K 14
OUT PUT ittt it iiiteetnneenannnes 15
CHARACTERS/LINEcvvirienennnnn 80
LINES/DISPLAYviiiiiinnnnnnnnnnns 24

TOTAL STORAGE
CAPACITY (7-BIT CHARACTERS) ... 1920

DATA TRANSFER RATE
MAX (BAUD) ..vvvinnernnsnnnnnnen. 4800

ACCUMULATOR FORMATS

READ CHARACTER BUFFER........... (DI1A)

CHARACTER OR COMMAND —l
} ! 1 } ! 1

O I 2 3 4 5 6 78 9 100 1213 1415
LOAD CHARACTER BUFFER.......... (DOA)

CHARACTER OR COMMAND —|
4 1 1 | 1 1

8 9 10 1l 12 13 14 15
S, C AND P FUNCTIONS

4 5 6

The display is a 12-inch CRT with an active area

of 6 by 9 inches, formatted into a twenty-four line S Set Busy to 1, Done to 0 and either load
by 80 character page. The characters that can be the Input Buffer or write a character into
plotted on this screen are taken from the standard the display's memory.

64 character subset of ASCII, listed in Appendix C.

C Set both Busy and Done to 0 and termi-
The terminal operates in three switch selectable nate all data transfers. If issued before
modes called Page-buffered, Page and Roll. Page- transmission is complete, partial char-
buffered mode allows an entire page of data to be acter codes are received.

entered into the terminal's memory, edited off line P No effect.
and then transmitted to the computer in part or in

Rev. 02

-9 DGC DISPLAY 6012

whole. In this mode there are six commands for
positioning the cursor, and ten additional com-
mands for defining protected and blinking areas,
setting tabs, clearing areas of memory, and trans-
mitting characters from memory to the computer.

Page mode allows a file to be transmitted to the
terminal and any desired changes made simulta-
neously to both the information in the terminal's
memory, through the terminal hardware, and the
corresponding characters stored in the computer's
memory, by means of software. The commands
are the same for these two modes; the only differ-
ence between them is that the keyboard in Page-
buffered mode is directly coupled to the display
and is off line from the computer until a special
transmit key is used, while the keyboard in Page
mode is always on line.

Roll mode simulates a teletypewriter. In this
mode there are five commands for positioning the
cursor, and three additional commands for clear-
ing areas of memory and transmitting data. All
data is entered into memory locations which corre-
spond to the bottom line of the display screen. A
LINE FEED command causes all lines on the
screen to move up one, the bottom line to become
blank and the top line to be lost.

INSTRUCTIONS

The following instructions and timing information
are for the DGC Display 6012 when it is used in
conjunction with a 4010 controller.

The 4010 controller contains an 8-bit Input Buffer
and an independent 8-bit Output Buffer. Since the
display is actually two devices, both a Busy and
Done flag are available for input operations and a
separate set of Busy and Done flags are available
for output operations.

The display controller's Busy and Done flags are
controlled using two of the device flag commands
as follows:

f=8 Sets Busy to 1, Done to 0 and either reads
a character into the Input Buffer or writes
the character in the Output Buffer into the
display's memory.

i=C Sets Busy and Done to 0, thus stopping all
data transfer operations. A Clear com-
mand issued in during a transfer will
result in the partial reception of the code
being transferred.

f=P No effect.

READ CHARACTER BUFFER

DIA<f> ac,TTI

lonl[m]oon F [0 01 0 0 O
A 1 1§ 1 1 |

11
0O' 1l 2 34 5 6 7 8 9 10 Il 1213 14 15

The contents of the Input Buffer are placed in bits
8-15 of the specified AC. Bits 0-7 of the specified
AC are set to 0. After the data transfer, the con-
troller's Input Busy and Done flags are set accord-
ing to the function specified by F. The format of
the specified AC is as follows:

| PAR
B ITY] ?NARII\CTEq OR I(20MM|AND \

8 9. .10 (1 1213 14 15

Bits Name Contents

Reserved for future use.

Parity bit selected at the
terminal; even, odd or none.

0-7 ——--
8 Parity

9-15 Character | The 7-bit character or com-
mand read from the Input

Buffer.

LOAD CHARACTER BUFFER

DOA<{> ac,TTO

0101| OlOlI
10 1F 12713 184 18

OII!AC'OIOIF
I'I : 1: 1
2 4 5 6 ' 7 B 9

Bits 9-15 of the specified AC are loaded into the
display's Output Buffer. After the data transfer,
the controller's Output Busy and Output Done flags
are set according to the function specified by F.
The format of the specified AC is as follows:

B PAR-I CHARACTER OR COMMAND }
=y 1TY | L]]
10 1l 2 13 14 15

8 9

Bits Name Contents

Reserved for future use
(always 0).

0-7 ——--

Eveﬁ, odd or no parity for
the 7-bit code. Ignored by
the display.

8 Parity

9-15 Character | The 7-bit character or com-
mand transmitted to the

Output Buffer.

I1-10

CONTROL CHARACTERS

The control characters for the DGC Display 6012
are described in the following format:

NAME-CODE (LOCATION) [and/or {8

Functional Description

NAME: Command Name

CODE: Octal command code
LOCATION: Keyboard location

m Destructive to some information

on the screen

Non-destructive to information on
the screen

FUNCTION: Effect of the command

START PROTECT-36 (CTRL SH N) B}

In Page-buffered and Page modes, START PROTECT
is displayed as a space and is the delimiter of the
beginning of a protected region. The end of the
protected region is delimited by the first TAB
STOP/END PROTECT character encountered,
scanning from left to right and downward on the
screen from the START PROTECT character. If
any command moves the cursor into a protected
region, the cursor will move to the first character
position following the TAB STOP/END PROTECT
character for that region.

Note that every START PROTECT character should
have a companion TAB STOP/END PROTECT
character between it and the end of the page or the
entire protection mechanism is disabled in the
terminal, and all START PROTECT and TAB STOP/
END PROTECT characters are displayed as spaces.

In Roll mode, START PROTECT has no effect.

TAB STOP/END PROTECT-35 (CTRL SH M) u

In Page-buffered and Page modes, TAB STOP,
END PROTECT is displayed as a space and does
one of two things; it is either a tab stop or it is the
delimiter of the end of a protected region or both.
If it is a tab stop, when a TAB command is issued
the cursor moves to the first character position
following the first unprotected TAB STOP/END
PROTECT character encountered on the screen,
scanning from left to right and downward on the
page from the cursor position. If it is a delimiter
of the end of a protected region, then the beginning
of that region must be delimited by a START
PROTECT character. If any command moves the
cursor into a protected region, the cursor will
move to the first character position following the
TAB STOP/END PROTECT character for that
region.

In Roll mode, TAB STOP/END PROTECT has no
effect.

HOME-10 (CTRL H) or (HOME)

In Page-buffered and Page modes, HOME moves
the cursor to the first position in the top line on the .
screen. If this position is in a protected region,
HOME will move the cursor to the first position

‘following the end protect character for that region.

If issued from the processor, HOME will terminate
a transmission initiated by a TRANSMIT BUFFER
command.

In Roll mode, HOME moves the cursor to the first
position in the bottom line of the display screen.

If issued from the processor, HOME will terminate
a transmission initiated by a TRANSMIT BUFFER
command.

CARRIAGE RETURN-15 (CTRL M)

In Page-buffered and Page modes, CARRIAGE
RETURN moves the cursor to the first character
position of the line the cursor occupies. If the
first position of the line is in a protected region,
the cursor will move to the first position following
the TAB STOP/END PROTECT character for that
region.

In Roll mode, CARRIAGE RETURN moves the
cursor to the first character position in the bottom
line.

m-11

DGC DISPLAY 6012

LINE FEED-12 (CTRL J) or () D 'ND

In Page-buffered and Page modes, LINE FEED
moves the cursor down the screen one line. When
the cursor is in the bottom line, LINE FEED has
no effect. If a LINE FEED moves the cursor into
a protected region, the cursor will move to the
first character position following the TAB STOP/
END PROTECT character for that region.

In Roll mode, LINE FEED moves all the lines of
data on the display screen up one line. The top
line of the display screen is lost and the bottom
line becomes blank. The cursor remains in its
current position in the bottom line.

TAB-11 (CTRL 1) or TAB

In Page-buffered and Page modes, TAB moves the
cursor to the position following the TAB STOP/
END PROTECT character encountered on the
screen, scanning from left to right and downward
on the screen. If no TAB STOP/END PROTECT
character is found on the screen between the cur-
sor position and the end of the page, the cursor
maoves to the first character position in the top
line. If this position is in a protected region, TAB
moves the cursor to the first position following the
TAB STOP/END PROTECT character for that
region.

In Roll mode, TAB has no effect.

CURSOR UP-17 (CTRL 0) or (4)

In Page-buffered and Page modes, CURSOR UP
moves the cursor up one line. When the cursor is
in the top line of the display screen, CURSOR UP
has no effect. If the command CURSOR UP moves
the cursor into a protected region, the cursor will
move to the first character position following the
TAB STOP/END PROTECT character for that
region.

In Roll mode, CURSOR UP has no effect.

Rev. 01

CURSOR RIGHT-30 (CTRL X) or (—) [N}

In Page-buffered and Page modes, CURSOR RIGHT
moves the cursor one character position to the
right. When the cursor is in the last character
position of the line, the cursor will move to the
first character position in the next line down the
page. When the cursor is in the last character
position of the bottom line, CURSOR RIGHT has no
effect. If the command CURSOR RIGHT moves the
cursor into a protected region, the cursor will
move to the first position following the TAB STOP/
END PROTECT character for that region.

In Roll mode, CURSOR RIGHT moves the cursor
one character position to the right. When the cur-
sor is in the last character position of the bottom
line, CURSOR RIGHT has no effect.

CURSOR LEFT-31 (CTRL Y) or (=—)

In Page-buffered and Page modes, CURSOR LEFT
moves the cursor one character position to the
left. When the cursor is in the first character
position of a line, the cursor will move to the last
character position on the line above it. When the
cursor is in the first character position of the top
line, CURSOR LEFT has no effect. If the com-
mand CURSOR LEFT moves the cursor into a
protected region, the cursor moves to the first
position following the TAB STOP/END PROTECT
character for that region.

In Roll mode, CURSOR LEFT moves the cursor
one character position to the left. When the cur-
sor is in the first character position of the bottom
line, CURSOR LEFT has no effect.

CLEAR TO END OF LINE-13 (CTRL K) or
(CLEAR EOL) m

In Page-buffered and Page modes, CLEAR TO
END OF LINE erases all unprotected data from the
cursor position to the end of the line, inclusive.
The cursor does not change position.

In Roll mode, CLEAR TO END OF LINE erases
all data from the cursor position to the end of the
line, inclusive. The cursor does not change
position.

Im-12

CLEAR SCREEN-14 (CTRL L) or (CLEAR) n

In Page-buffered and Page modes, CLEAR SCREEN
erases all unprotected data on the display screen.
The cursor moves to the first character position

of the top line. If the first position of the top line
is in a protected region, CLEAR SCREEN moves
the cursor to the first position following the TAB
STOP/END PROTECT character for that region.

In Roll mode, CLEAR SCREEN erases all data on
the sereen and moves the cursor to the first char-
acter position of the bottom line. Data cannot be
protected in Roll mode.

FORCE ERASE-34 (CTRL SH L) [}

In Page -buffered and Page mode, FORCE ERASE
erases all data on the screen, including all pro-
tected areas. The cursor moves to the first char-
acter position in the first line.

In Roll mode, FORCE ERASE has no effect.

BLINK-37 (cTRL sH O) |}

In Page-buffered and Page modes, BLINK causes
any character, or characters, between two BLINK
characters to flicker on the display screen. If a
single BLINK character is entered on the page, all
characters from that position to the end of the page
will flicker. BLINK characters are displayed as
spaces and are transmitted as underscores. The
cursor moves one character position to the right.
In Roll mode, BLINK has no effect.

TRANSMIT BUFFER-16 (CTRL N) [N

In all modes, TRANSMIT BUFFER sends to the
processor the contents of the terminal's memory,
character by character, from the cursor position
to the end of the page. Any protected regions en-
countered will not be transmitted. The data on the
display screen will not be disturbed. TRANSMIT
BUFFER moves the cursor to the last character
position of the last line. If this position is pro-
tected, the cursor moves to the first unprotected
position on the page. Transmission can be halted
at any point by having the program issue a HOME
command.

II-13

CONTROL KEYS
xmiT o

XMIT allows the operator to transmit a message
to the processor while the terminal is in Page -
buffered mode. The message is sent by holding
down the XMIT key while typing characters on the
keyboard. If the terminal is operating in full-
duplex and the program does not echo the char-
acters back to the terminal, the data on the
display screen remains undisturbed. If the ter-
minal is operating in half-duplex or if the program
echoes characters, then the message entered will
overwrite data on the display screen.

In Page and Roll modes, XMIT has no effect.

BREAK

In all modes, while BREAK is depressed, the
terminal's transmitter is disabled so that no char-
acters are transmitted from either the keyboard
or the memory.

REPEAT BN

The REPEAT Kkey provides the continuous trans-
mission of any code as long as both the REPEAT
key and the code's corresponding key(s) are held
down together.

SHIFT and CTRL

The SHIFT and CTRL keys produce commands or
alphanumeric codes when they are depressed to-
gether with other keys.

ESC-33 (ESC) (CTRL SHIFT K) |
In Page and Roll modes, ESC sends code 33, a pro-‘
tocol character. ESC does not work together with
REPEAT,

In Page -buffered mode, ESC can be used with the |
XMIT key. J
ctrL ReseT)

CTRL RESET clears the entire display memory,

initializes the control, and places the cursor in the
first position of the bottom line.

Rev. 01
DGC DISPLAY 6012

PROGRAMMING

Since the terminal is actually two separate devices,
input and output are discussed separately.

Input

Neither full- nor half-duplex input operations have
to be initialized by the program. Striking a key in
either Page or Roll modes automatically transmits
the corresponding character to the controller.
After the character is assembled, the Input Busy
flag is set to 0, the Input Done flag is set to 1 and
a program interrupt request is initiated.

The character can then be read by issuing a READ
CHARACTER BUFFER instruction (DIA). The
Input Done flag should then be set to 0 with either
a Start or a Clear command. This allows the next
character to initiate a program interrupt request
when it is fully assembled.

The TRANSMIT BUFFER command transmits the
contents of the terminal's memory character by
character to the controller,

Ovutput

A character is loaded into the Output Buffer of the
controller by issuing a LOAD CHARACTER BUFFE
instruction (DOA). The character can then be
transmitted to the terminal by issuing a Start com-
mand. While the character is being transmitted,
the Output Busy flag is set to 1. Upon completion
of the transmission, the Qutput Busy flag is set to
0 and the Output Done flag is set to 1, thus initiat-
ing a program interrupt request.

Each time a character is to be sent to the términal,
the Output Buffer must be reloaded with a LOAD
CHARACTER BUFFER instruction. A sequence of
LOAD CHARACTER BUFFER instructions together
with Start commands is used to transmit a multi-
character message. The program must allow each
character to be transmitted before transmitting the
next character. ‘

Rev. 01

R

II-14

TIMING

Input Timing

After the Input Done flag is set to 1, and before
another key strike can destroy the character in
the Input Buffer, the character is available for a
READ CHARACTER BUFFER instruction for a
time interval determined by the baud rate.

Maximum Allowable
Programmed I/O Latency Baud Rate
(ms)
21.59 110
15.84 150
7.92 300
3.95 600
1.97 1200
1.31 1800
.98 2400
.65 3600
.49 4800

Output Timing

After the Output Done flag is set to 1, the program
should provide another character within a time
limit determined by the baud rate to keep the
transmission line operating at its maximum rate.

Time Limit Baud Rate

(ms)

9.15 110

6.64 150

3.32 300

1.66 600
.83 1200
.55 1800
.42 2400
.27 3600
.21 4800

CONSIDERATIONS

The command TRANSMIT BUFFER, which is de-
signed to be used primarily in Page-buffered mode,
can also be issued when the display is in Page or
Roll modes. '

Input

The codes received from the terminal can be se-
lected, at the terminal, to be 5, 6, 7, or 8 bits
long with even, odd, or no parity bit. The pro-
grammer should determine the code structure used
in the terminal and make sure that the controller
is compatible.

When the terminal is operating in full -duplex, the
program must "echo' the characters if they are
to affect the display screen.

Half-duplex operation requires a protocol to be set
up between the computer and the terminal. The
protocol should be formed to resolve any conflicts
over the use of the transmission line.

II-15

Output

The codes received by the terminal can be selected,
at the terminal, to be 5, 6, 7, or 8 bits long. The
parity bit is ignored in all codes received by the
terminal.

When characters are sent to the terminal, all lower
case characters are displayed as their uppercase
equivalents.

Half-duplex operation requires a protocol to be set
up between the computer and the terminal. The
protocol should be formed to resolve any conflicts
over transmission line use.

When operating in either Page-buffered or Page
mode, characters will automatically continue to
the next line when the end of the current line is
reached. When the last line on the page is filled,
any other characters received will overwrite the
last character on the last line. When operating in
Roll mode, the last character in the bottom line
will be overwritten by subsequent characters. In
order to avoid overwriting any line, both a
CARRIAGE RETURN and a LINE FEED command
should be issued.

DGC DISPLAY 6012

This page intentionally left blank

I-16

SECTION Il

HARD COPY

PAPER TAPE READER

PAPER TAPE PUNCH

CARD READERS

LINE PRINTERS

PLOTTERS

HARD COPY

This page intentionally left blank

INTRODUCTION TO
HARD COPY PERIPHERALS

Hard copy peripherals are devices through which
data is transferred into and out of the computer
system. Data is entered into the system through
input devices which read or sense coded data from
paper tape or cards, and transferred out of the
system to output devices which record the data on
paper tape, line printer paper, or plotting paper.

Paper tape can be used as either an input or an
output medium. The medium is a long strip of
1/2" wide paper or mylar tape. A series of holes
located across the width of the tape represent a
frame of information. Each frame contains eight
bits. The information on the tape may be entered
into the computer system through either a high
speed paper tape reader or through a Teletype
equipped with a paper tape reader. The maximum
transfer rate for a high speed reader is 400 frames/
second while the input rate from an ASR Teletype
is either 10 or 15 frames/second, depending on the
particular model used.

Information may be transferred out of the system
to either a high speed paper tape punch or to a
Teletype equipped with a paper tape punch. The
maximum transfer rate to a high speed punch is
63.3 frames/second while the rate to an ASR Tele-
type is either 10 or 15 frames/second, depending
on the particular model used.

Cards for input may be of two types: industry
standard 12-row 80-column punched cards or 12-

row variable-format mark-sense cards. A series
of 12 locations across the width of a card repre-
sents a column of information which is coded as
holes in the appropriate locations on a punched
card or as pencil marks in the appropriate loca-

tions on mark sense cards.

The information

transfer rate depends on the particular model of
the card reader used and the format of the card.
The range is from 150 to 1000 cards/minute.

Line printers provide high speed hard copy output
for alphanumeric information. The paper is
generally sprocket-fed, fan-fold and of widths
ranging from 4 to 19 7/8 inches. Alphanumeric
information is sent to a line printer in either 64
or 96 character subsets of ASCII code. Depending
on the particular model used, information can be
transferred at a rate of up to 300 136 -character

lines/minute.

Graphical output in the form of charts and drawings
is provided by the incremental plotters. Several
variations allow plotting on either a single sheet,

a roll, or a fanfold stack of paper. All plotters
allow the selection of 8 possible line segments
which can be generated in each incremental step.
The length of the basic step size may be specified
upon ordering to be either metric (.05 - .25mm) or

english (.002 - . 010 inch).

Depending on the model

used, the plotter draws at either 200 or 300 steps/

second.

NI-1 of 28

HARD COPY

This page intentionally left blank

II1-2

PAPER TAPE READER

INTRODUCTION

Paper tape readers provide data input from stan-
dard fanfold eight-channel paper or mylar tapes at
speeds of up to 300 or 400 frames/second (4011B
and 6013 readers, respectively). The reader con-
sists of a supply bin, a read station, and a receiv-
ing bin. Tape is moved from the supply bin through
the read station, where each frame is read, to the
receiving bin where it may be removed.

SUPPLY
BIN

READ STATION
AND BRAKE MECHANISM

DIRECTION
OF MOTION

DRIVE
RECEIVING MECHANISM
BIN

DG-00949

The tape format is shown below. The eight chan-
nels across the width of the tape comprise a frame.
The sprocket hole is used as a timing strobe for
each frame as it enters the read station. Both the
code structure used for data and the interpretation
of the input is determined by conventions decided
upon by the programmer. Conventional ASCII
paper tape code may be found in Appendix C.

TAPE
CHANNEL
#

N

AC
BIT
rd

15
13

“

.
VPO 90 e
°

13 .

009 9000 0jaedd

B SPROCKET
HOLES

DOV e GIN

n
10

- %)

0G-00449

<J=—— DIRECTION OF TAPE MOVEMENT

oI-3

SUMMARY
MNEMONIC (FIRST CONTROLLER) PTR
DEVICE CODE (FIRST CONTROLLER)..... 12
MNEMONIC (SECOND CONTROLLER) .. PTR1
DEVICE CODE (SECOND CONTROLLER)... 52
PRIORITY MASK BIT v eeveevnernnnnnnes 11
BITS/FRAME . ..ovneivnneinnnennnennnns. 8
FRAMES/INCH .ot neeeiiennnnnnn, 10
CAPACITY OF HOPPER (FEET) 100-150
MAXIMUM DATA TRANSFER RATE
(FRAMES/SECOND) +....uvun.. 300 or 400
ACCUMULATOR FORMAT
READ FRAME ..0uvvniirnnennnennnns. (DIA)

-1 |CHAN
8

CHAN|CHAN
7 6

CHAN
S

[CHAN[CHAN
4|3

CHAN
2

CHAN
1

S, C AND P FUNCTIONS

Set the Busy flag to 1, the Done flag to
0, and load the Frame Buffer with the
contents of the frame.

Set the Busy and Done flags to 0 without
affecting the contents of the Frame
Buffer.

No effect.

Rev. 01
PAPER TAPE READER

INSTRUCTIONS

The tape reader is driven by a controller which
contains an eight-bit Frame Buffer. If a hole is
punched in a channel of a frame on a tape, a 1 will
be loaded into the data bit corresponding to that
channel when the frame is loaded into the Frame
Buffer. The sprocket hole is not loaded into the
Frame Buffer, but signals the controller when a
frame enters the read station.

One I/0 instruction is used to program the tape
reader. This instruction loads the contents of the
Frame Buffer into an accumulator.

The tape reader controller's Busy and Done flags
are controlled by the flag commands as follows:

f=S Set the Busy flag to 1, the Done flag to
0, and load the Frame Buffer with the
contents of the next frame on the tape.

f=C Set both the Busy and Done flags to 0
without affecting the contents of the
Frame Buffer.

=P No effect.

READ FRAME

DIA<f> ac,PTR

OIIIACOOIFOOIOIO

] i 1 Il] i 1 i 1 1 |
o'l 2 3'4 5 6'7 8 9710 I 12713 14 15

The contents of the Frame Buffer are loaded into
bits 8-15 of the specified AC. Bits 0-7 are set to
0. After the data transfer, the controller's Busy
and Done flags are set according to the function
specified by F. The format of the specified AC is
as follows:

[CHAN]CHAN|CHANICHAN|CHAN [CHAN|CHAN{CHAN

i 8 T € 5 4 3 2 1
7 8 9 10 Il 12 13 14 15
Bits Name Contents
0-7 -——— Reserved for future use.
8 channel 8 |)
9 channel 7
10 channel 6 A hole in the corresponding
11 h 15 channel(s) of the frame
channe read places a 1 in the cor-
12 channel 4 responding accumulator
13 channel 3 position(s).
14 channel 2
15 channel 1| J

11-4

PROGRAMMING

Once the operator has loaded the tape into the
reader and placed the reader on line, the program
may read the tape. A Start command (NIOS) issued
to the reader will load the Frame Buffer with the
contents of the next frame on the tape. While the
buffer is being loaded, the Busy flag is 1, and the
Done flag is 0. When the buffer has been loaded,
the Busy flag is set to 0, and the Done flag is set
to 1, thus initiating a program interrupt request.
The program may then read the contents of the
buffer by issuing a READ FRAME instruction (DIA).
The READ FRAME instruction loads the contents
of the Frame Buffer into the specified accumulator.
The program may continue reading frames by is-
suing a series of Start commands and READ
FRAME instructions.

TIMING

The paper tape reader is capable of reading at
speeds of up to 300 (4011B) or 400 (6013) frames
per second. When operating at this speed, the
reader takes 2.5 milliseconds to fill the Frame
Buffer with the next frame on the tape. In order to
keep the tape in continuous motion, the program
must retrieve the data, and set Busy to 1 within
100 microseconds after the Done flag is set to 1.
Waiting longer than this time forces the reader to
stop and restart the tape. The programmer should
not attempt to operate the reader in this manner at
speeds in excess of 150 frames per second. Faster
stop/start rates produce chatter and may lead to
unreliable reader operation.

CONSIDERATIONS

Usually, the tape has a leader which is composed
on a series of null frames. Since the contents of
the Frame Buffer are indeterminate when the com-
puter is first turned on, the frames on the leader
may be used to set the contents of the Frame Buf-
fer to 0. The leader may be ignored by checking
each frame, as it is read into the buffer, for non-
zero contents. Processing of the information field
may begin when the program finds a non-zero
frame. The program usually recognizes the end
of the information field on the tape by some pre-
determined contents of a frame or group of frames
which signify the end of tape. A second method
for determing the end of tape is by counting the
total number of frames in the information field on
the tape.

PROGRAMMING EXAMPLES

To program the paper tape reader, all that is re-
quired are four instructions. An example of this,
inserted in a program would be the following:

NIOS FTR iSTART READER
SKFIIN FTR iFRAME BUFFER LOADED YET?
JHP 1 iNO

DIAC 1»FTR FREAD THE FRAME ANDI CLFAR THE DONE FLAG

But many times, more than one character may
need to be read, and four simple instructions are
not enough. In addition, there may be a leader

(a number of blank frames at the beginning of the
tape) which the programmer may want to ignore.
The following subroutine reads a specified number
of frames, ignoring the leader, and stores them,
sequentially, starting at the address contained in
AC2. When the subroutine is called, AC1 contains
the number of characters to be read. Upon return
to the main program, ACO is untouched, AC1 con-
tains the starting address of the data storage, and
AC2 contains an address which is one more than
the final address of the data. The subroutine is
called with a JUMP TO SUBROUTINE instruction
(JSR).

For example, to read 60g frames and store them
sequentially, starting at location 4120, give:

LDA 1+SIXTY FGET NUMBER OF FRAMES TO RFAD

LA 2+ADDR SGET REGINNING OF BUFFER

JBR FPTRD 560 TO READER SURROUTINE
SIXTY: &0

ANDR 2 4120

I-5 PAPER TAPE READER

This will call the following routine:

H FAFER TAFE READER INFUT SURROUTINEs INTERRUPTS DISARLED
H CHECK FOR AND IGNORE LEAIER
FIRIz 5TA 12 CNT FSTORE COUNTER
STA 2:5AVZ §ISAVE AC2
AGATNT NIOS FTR FSTART READER
SKFIIN FTR SREADY?
JHF .1
DIA 1+FTR sREAD CHARACTER
MoV 1+1,8NR iNULL CHARACTER?
JHE AGAIN FYES
JMP STORE iNGQr ENTER LOOF
i READ DATA .
a0 NIOS FTR FRESTART READER
SKFIN FTR FREADY?
JMF .1
DIA 1»FTR FREADL DATA
STORE: S5Ta 15052 FSTORE DATA
INC 242 F INCREMENT STORAGE LOCATION
sz CNT FDONE?
JMF LOGF FNO
LhoA 1:8A02 SRELOAD STARTING ANDRESS OF DATA
JMF 0,3 FRETURN
H STORAGE
CNT : 0 FCOUNTER
GAYZ2: 0 FAC2 SAVE LOCATION

Both of these examples are inefficient because

thev must wait in a loop during the 2.5 milliseconds
it takes to complete loading in the Frame Buffer.

1. ‘here are other-devices that could be serviced
~shile waiting, or calculations that could be per-
iormed, and interrupt service routine may be use-
ful. An example of a paper tape reader service
routine in an interrupt handler can be found in
exa.ple three in Part 1 of this manual.

PAPER TAPE PUNCH

INTRODUCTION

The paper tape punch provides data output to stand-
ard-fanfold eight -channel paper or mylar tapes.
The punch consists of a supply bin, a punch station,
and a take-up bin. Tape is moved from the supply
bin to the punch station, where it is punched, and
then to the storage bin where it may be removed.
The punch can operate at speeds of up to 63.3
frames per second. Some punches are equipped
with a program controlled ON/OFF switch.

SUPPLY
BIN

TO CONTROL
MECHANISM

PUNCH
MECHANISM

S %;}iﬂimmm

STATION
STORAGE
BIN

The format of the tape is shown below. The eight
channels across the width of the tape comprise a
frame. The sprocket hole is punched to allow the
tape to be read by standard paper tape readers.
Both the code structure and interpretation of the
input is determined by conventions decided upon
the programmer. Conventional ASCII paper tape
code is listed in Appendix C.

SPROCKET
HOLES

(I 11T

£6-00625 <= DIRECTION OF TAPE MOVEMENT

-7

SUMMARY
MNEMONIC (FIRST CONTROLLER) PTP
DEVICE CODE (FIRST CONTROLLER)....... 13g
MNEMONIC (SECOND CONTROLLER) PTP1
DEVICE CODE (SECOND CONTROLLER)..... 53g
PRIORITY MASK BIT ciiiiiiiiiienns 13
BITS/FRAMEvveeineeeeianneeannnss 8 i-
FRAMES/ INCH ..ovviii e 10
MAXIMUM TAPE LENGTH
IN STORAGE HOPPER (FEET)........... 300
MAXIMUM DATA TRANSFER RATE
(FRAMES/SECOND)ovvvivineunnnn. 63.3
ACCUMULATOR FORMAT
LOAD FRAME BUFFER................ (DOA)
CHAN CHANICHAN CHAN CHAN]CNAN CHAN
7 3 5 4 3 2 |
9 10 1l 12 13 14 15
S, C AND P FUNCTIONS
S Set the Busy flag to 1, the Done flag to 0,
punch the character in the Frame Buffer
and advance the tape 1 frame.
C Set the Busy and Done flags to 0 without
affecting the contents of the Frame Buffer.
P No effect.
Rev. 02

PAPER TAPE PUNCH

INSTRUCTIONS PROGRAMMING

The tape punch is driven by a controller contain- Once the operator has loaded tape into the punch,
ing an eight-bit Frame Buffer. If a hole is to be and placed the punch on-line, the program may
punched in a channel of a frame on the tape, a1 punch the tape. Since the contents of the Frame
should be loaded into the Frame Buffer position Buffer are indeterminate when the computer is _
corresponding to that channel when the buffer first turned on, the program should load the Frame
is loaded. The sprocket hole is not loaded into Buffer using a LOAD FRAME BUFFER instruction
the Frame Buffer, but is punched automatically. (DOA), before issuing a Start command. Once the
FRAME BUFFER has been loaded, a Start command
One 1/0 instruction is used to program the paper should be issued to punch the frame. A Start com-
tape punch. This instruction loads the contents mand sets the Busy flag to 1, the Done flag to 0,
of an accumulator into the Frame Buffer of the and then punches the contents of the Frame Buffer.
controller. Once the frame has been punched, the tape is
advanced, the Busy flag is set to 0, and the Done
The paper tape punch controller's Busy and Done flag is set to 1, thus initiating a program interrupt
flags are set according to the device flag com- request. To continue punching data, a series of
mands as follows: ‘ LOAD FRAME BUFFER instructions and Start
f=S Set the Busy flag to 1, the Done flag to 0, commands should be issued.

and punch the contents of the Frame Buffer
on the tape. If the automatic ON/OFF option

is installed, and the power switch is off, TIMING

a Start command also turns on the punch.

It will not affect the contents of the Frame The paper tape punch operates on a mechanically

Buffer. determined cycle time of 15.8ms and is capable
£ Set both the Busy and Done flags to 0 with- of punching up to 63.3 frames/second. The first

Start command issued will take effect at the point
11.3ms after the cycle has started. I the cycle
has already passed this point, the punch will wait
f=P No effect. until the next cycle. Once the punch has been
started, the Done flag will be set to 1 at the begin-
ning of the next cycle, thus initiating a program

out affecting the contents of the Frame Buf-
fer.

LOAD FRAME BUFFER interrupt request. In order to operate at the maxi-
mum speed, the program must issue another Start

DOA<f> ac,PTP ‘ command within 11.3ms after the Done flag has
been set to 1, otherwise, the punch must wait

Iolll'lAlC IOIIIO Fl: olol'lollll another cycle.

L A The program controlled ON/OFF option requires

Bits 8-15 of the specified AC are loaded into the approximately a 1-second delay before punching

Frame Buffer. Bits 0-7 are ignored. After the may begin. If the Busy flag remains 0 for more

data transfer, the punch controller's Busy and than 5 seconds, the punch will be turned off auto-

Done flags are set according to the function speci- matically.

fied by F. The contents of the specified AC remain
unchanged. The format of the specified AC is as

follows: CONSIDERATIONS

{ CHAN| CHAN| CHAN | CHAN | CHAN | CHAN | CHAN | cia To make loading the reader and unloading the punch
8 7 6 5 4 3 2 | . .
PR — 5 6 7 8 9 10 0 12 13 1215 easier, tapes are usually punched with leaders and
trailers made up of a series of blank frames. In
Bits Name Contents order to do this, the Frame Buffer should be loaded

with all zeroes, and a series of Start commands
issued. A Start command does not destroy the con-
8 channel 8 tents of the Frame Buffer, so a series of Start
commands may be used to repeat any character.

0-7 BT Reserved for future use.

9 channel 7

10 channel 6 Many times a predetermined frame of group of
. . . frames is also punched with the leader or trailer
1 channel 5 | r A 1 is placed in the bit to signify the length of the record, or the end of

position(s) corresponding data, for the program reading it later.
12 channel 4 to the tape channel(s) in ’ prog &
113 channel 3 which a hole is to be punched,

If the punch runs out of tape, the punching opera-
14 channel 2 tion continues and no indication is given to the

program. Therefore, the operator should verify
15 channel 1

Rev. 01 I1I-8

that sufficient tape is present for the data he
intends to punch.

The standard punch must be left on all the time
that it might be used as it otherwise will not
respond to the program. With the automatic
power ON/OFF option, the punch can be left off.
Then if the Busy flag is set to 1 when the motor is
off, punching is automatically delayed about 1
second while the motor gets up to speed. It can
be assumed that the motor will remain on through-
out any normal punching run, but if the Busy flag
remains 0 for more than 5 seconds, the motor is
turned off.

It is often necessary to punch a block of frames.
A subroutine to do this, including the punching of
leaders and trailers would be similar to the follow-
ing program. Upon calling the subroutine, AC1
contains the number of frames to be punched and
AC2 contains the starting location where the data
is stored sequentially, one character per word.
Upon return to the main program, AC2 will con-~
tain an address one greater than the address of
the last frame punched. For example, to punch
40g frames, stored sequentially, starting at loca-
tion 1000, the following series of instructions may
be used:

PROGRAMMING EXAMPLES LDA 1, FORTY
LDA 2, ADDR
In order to punch a frame on paper tape, only three JSR PUNCH
instructions are required. An example of punch- .
ing a frame during a program would be: .
FORTY: 40
SKPBZ PTP ADDR : 1000
JMP .-1 _
DOAS 1,PTP These instructions would call the following sub-
routine;
5 FAFER TAFE FUNCH OUTFUT SUBRROUTINE
FUNCH: STA 3yRET §SAVE RETURN ADDRESS
JSR LEADER FPUNCH LEADER
NEG is1 iNEGATE COUNTER
LOOF = LA 35042 sLOAD DATA
SKFBZ FTF sFTF READY?
JMF .1 3NO
noaAas 3sFTF SYESs FPUNCH FRAME
INC 292 FINCREMENT FOINTER

INC 151s8ZRK §INCREMENT COUNTER,SKIF IF ZERO

JMF LOagF iFUNCH AGAIN
ouT: JSR LEADER §FPRINT TRAILER
NIOC FTF FCLEAR FUNCH
JHF GRET FGET OuT
H FUNCH SERIES OF BLANK FRAMES
LEADER: STA 3, 8AV3
LUA 3 ONT sLOADIY COUNTER FOR RLANKS
8TA 3yCNTR FSTORE IT FOR USE
SUR 3,3 FZERO AC3
SKFRZ PTF SREADY?
SMF .~1 iNOy THEN WAIT
noas 3sFTF sOUTFUT NULL CHARACTER
DSz CNTR FODECREMENT COUNTER
JMF .4 sLOOF RACK
JMF @S5AV3 FRETURN
H STORAGE
RET : 0
SAV3: 0
CNT: 2490 716 INCHES WORTH OF FRAMES
CNTR = 0

I1-9

Both of these programs must wait in loops for the
entire cycle time of the punch. In many cases, an
interrupt driven paper tape punch might be desirable.
An example of an interrupt driven punch may be
found in the examples in part 1 of this manual.

PAPER TAPE PUNCH

This page intentionally left blank

II1-10

CARD READERS

INTRODUCTION

Card readers provide data input from standard
12-row cards at rates up to 150-1000 cards per
minute. There are two types of card readers
available, one which reads standard 80-column
punched cards, the other which reads optically
sensed mark cards and punched cards in various
12-row formats. This second type of reader is
also capable of reading inter-mixed card types,
one card type at a time. The following table lists
various specifications of the card readers sold by
Data General Corporation.

DATA CARD TIME
DGC TRANSFER | CYCLE| BETWEEN
MODEL | CARD RATE TIME | CHARACTERS
NUMBER| TYPE (CARDS/MIN)| (ms) (ms)
4016C Punch 150 400 2.01
4016D Punch 285 200 2.0
4016E Punch 400 150 .87
4016F Punch 600 100 .87
4016G Punch 1000 60 .48
4016H Mark 150 400 161%*
Sense
40161 Mark 285 210 161+
Sense
40163 Mark 400 150 69%
Sense
4016K Mark 600 100 69%
Sense
4016L Mark 1000 60 40*
Sense

*Divide this number by the number of columns/card to
obtain intercharacter times.

SUMMARY
MNEMONIC (FIRST CONTROLLER)...... CDR
DEVICE CODE (FIRST CONTROLLER)...... 16g

MNEMONIC (SECOND CONTROLLER).... CDR1
DEVICE CODE (SECOND CONTROLLER).... 56g

PRIORITY MASK BIT .+t vveiterennrnnannns 10
BITS/COLUMN ..t tvtitireeeinaennneonns 12
COLUMNS/CARD....... PUNCHED. 80
MARK SENSE. .. 20-160
MAXIMUM DATA TRANSFER RATE
(CARDS/MINUTE) ... ccvvvvnnnnnn. 150-1000
ACCUMULATOR FORMATS

READ COLUMN .« st eeetiteiveeiennnnns (DIA)
1R0w ROW | ROW [ROW | ROW [ROW | ROW | ROW [ROW [ROW | ROW Row]

12 " 0 1 2 3 4 5 [7 8 9

4 5 6 7 8 9 10 10 12 13 14 15
READ STATUS..... ereaee s (DIB)
'''' NE/SF Fiek ERROR{READV@I

10 11 12 13 14 15

S, C AND P FUNCTIONS

S Set the Busy flag to 1, the Done flag to 0,
and pick the next card.

C Set both the Busy and Done flags to 0.

P Set the Done flag to 0 without affecting

the Busy flag.

II-11

CARD READERS

The reader is comprised of a card supply hopper,
a read station, and a card stacker. A card is
selected from the hopper by a mechanical pick,
and is moved into the read station. Here it is
read, one column at a time. Once the card has
been read, it is moved to the card stacker where
it may be stored temporarily, before being re-
moved.

HOPPER

|/ ||I|
I Wy
AR :'
‘|||||I h
Ot

READ
STATION

-

ORS

STACKER

DG -0087

The formats of the cards are shown below. The
twelve rows across the width of the card comprise
a column. Cards are either standard 80-column,
punched or variable format mark sense cards.
Both the code structure used and the interpretation
of data is determined by the programmer. The
conventional Hollerith punched code is listed in
Appendix C.

INSTRUCTIONS

The card reader is driven by a controller which
contains a 12-bit Data Register and a 5-bit Status
Register.

Two I/O instructions are used to program the
card reader; the first reads a column on the

card, and the second allows the program to deter-
mine, in detail, the status of the card reader.

The card reader controller's Busy and Done flags
are set according to the three device flag com-
mands as follows:

f=S Set the Busy flag to 1, the Done flag to 0,
and bring a card from the hopper into the
read station.

Set both the Busy and Done flags to 0. If
a card is in the reader, it will continue to
move through the reader, but no program
interrupt requests will be generated as
the columns pass through the read station.

Set the Done flag to 0 without affecting the
Busy flag.

f

f

P

READ COLUMN

DIA<f> ac,CDR

ROW 12 123458709 T | T T SR N
11l mmnnn i
] uuaaaumna IEERELFEE] BRRR 111111 IR R LRI |||nu Wunjuouun
| l\Hl\\HH\HI\lHH i Pibritisritrgsnn \lHlHllHHHHlHH
2| roniiizeeniamiziinag [EEEERERR P H] FRRN IK 12iR222120220%
3] 3303338339335290053093333 370 33333505423733333330333333 EEREY | EEREREERF!
4 [EEYREY] EERREREYTRETY] JERREERD! REFEREY] ERE RS URENEN! KRR RRY] FERER] PR YN RN SRR E v T Y
5| ssssscssksiasgirantassh [N FEEMAEE MRS A EEY FIAEEE! EEEEET R HERTIEY
6| sescssaselEssIssEEE656s BT ST TR I AT BEETE RO (X
v 3 GRERRARERRRR: SRRRRERARNERE! RERSE IRRRSRRT RERRRRSRRRRE] ERARRR] RRRRRT RERRRI FRRRRES
8 8882834080 :M9589¢88886a83cMigsass B EREETRL LN LRI T AL ER DT EH (TR RS
9 99530999933909759599 039939993099939990:395573999 9
DU el AT i i)

Standard 80 Column Punched Card Format
D6-02191

0|||Ac[o I oo 1 I 1 0O
) 1) I) R N

1 1
15

0’1 2 3'4 5 6 7 8 910 Il 1213 14

The contents of the controller's Data Register are
loaded into bits 4-15 of the specified accumulator.
Bits 0-3 are set to 0. After the data transfer, the
controller's Busy and Done flags are set accord-
ing to the function specified by F. The format of

the specified AC is as follows:

—NN T ON OO0 =NNYREEEO QSN T IBE D g A R e
g
novnz/nnuuuuunuuuunuunuunuuunnuunuuuuununnuuun
n ”“”U”HHHMHHHHHHHHHHHH"
0 LLLLLLLLLLLL L0 B0 0 en 000
| P A e
2l 00000 0600000000000 0000000000000000000000 3
sE0000000000000000000000000000000000000800 %
alt00000000000000000000C00000000000D00000010 ¢
s| 000000060000 0000000000D0000B0R0000000000 E
6| 00000000000 00000G00000000000000000000000 %
7} 000000000000000000000000000640000008000¢0 §
e | 200000000000 0000000 000000000 0REEDT00DEET
e \lalﬂlulﬂlulnlﬂlululululﬂlulnluIululﬂlﬂlnlﬂlﬂlﬂlululu'lnlnIﬂlulnlﬂlululnlﬂlulﬂlnlul
06G-02/92 Mark Sense Card Format
Rev, 01

ROW| ROW| ROW | ROW | ROW| ROW| ROW | ROW| ROW| ROW| ROW| ROW
12 I 0 1 2 3 4 - 6 7 8 9
0 | 2 3 4 5 & 7 8 9 101 12 13 14 15
Bits Name Contents
0-3 ——— Reserved for future use.
4 Row 12
5 Row 11
6 Row 0
7 Row 1
8 Row 2
9 Row 3 If the row on the card is
10 Row 4 punched or marked, the
11 Row 5 corresponding bit is set
12 Row 6 to 1.
13 Row 7
14 Row 8
15 Row 9

II-12

READ STATUS

DIB<f> ac,CDR

l[oullAc|00| F
%l l) I |

oo I 1 10
i b1

o 1 2

3'4 5

6'7 8 9

1
0 1 1213 14 15

The contents of the controller's Status Register
are loaded into bits 11-15 of the specified ac-

cumulator.

Bits 0-10 are set to 0. After the

data transfer, the controller's Busy and Done
flags are set according to the function specified
by F. The format of the specified AC is as
follows:

PICK Cafp
FAIL |ERRORIREADY "IN

Y

0ot 2 3 4 5 7 8 9 0 1l 12 13 14 I5
Bits Name Meaning When Set to 1
0-10 -—- Reserved for future use.
11 Hopper The input hopper has run
Empty/ out of cards or the output
Stacker stacker is full.
Full
12 Pick The card did not move from
Failure the input hopper into the
card reader.

13 Trouble A card is jammed in the
reader or there is an elec-
tronic failure.

14 Ready The reader is ready to take
another card from the input
hopper.

15 Card In A card is passing through

Reader the read station.

PROGRAMMING

When the card reader is on-line, and ready to
transmit data, the program may issue a Start
command to the controller. A Start command
sets the Busy flag to 1, the Done flag to 0, and
picks a card from the hopper. Once the first
column enters the read station, the Done flag is
set to 1, thus initiating a program interrupt re-
quest. The Busy flag remains set to 1 as long as
the card remains in the reader.

The column may then be read by a READ COLUMN
instruction (DIA). A READ COLUMN instruction
loads the specified accumulator with a one in
those bits corresponding to punched or marked
rows in a column. A Pulse command should then
be issued to set the Done flag to 0 without affect-
ing the Busy flag. This will allow the next column
on the card to set the Done flag to 1 when it enters
the read station, thus initiating a program inter-
rupt request. Usually the READ COLUMN instruc-
tion and Pulse commands are combined in a DIAP
instruction.

Consecutive columns may be read by a series of
DIAP instructions, waiting between each for the
Done flag to be set to 1.

When the final column has been read, the card
passes out of the read station, the Busy flag is

set to 0, and the Done flag is set to 1, thus initiat-
ing a program interrupt request. Another card
may then be loaded into the reader. Note that the
Done flag serves two purposes. When combined
with the Busy flag being 1, the setting of the Done
flag to 1 signifies a column is ready to be read.
When combined with the Busy flag being 0, the
setting of the Done flag to 1 signifies the end of a
card.

The controller's Status Register can be checked at
any time by means of a READ STATUS instruction
(DIB). Before a Start command is issued, the
Status Register should be checked for the Ready
flag being 1, and after the Start command is is-
sued, it should be checked for a possible pick
failure. Note that if a pick failure occurs, the
Done flag is not set to 1, but remains set to 0.
Thus a program interrupt request will not occur.
Status should also be checked after each column
is read to determine any possible errors while
reading. See the section entitled Error Conditions
for a more detailed discussion concerning the use
of the Status Register.

Rev. 01
CARD READERS

I1-13

TIMING

The following table contains all the relevant timing
information for the various card readers available
from Data General Corporation. The term "card
cycle time'' refers to the time it takes an entire
card to be loaded, processed, and put into the

stacker. The term "'maximum allowable pro-
grammed I/0 latency'' refers to the amount of time
the program has after the Done flag is set to 1 in
order to issue a READ COLUMN instruction. If
the program waits longer than this time, the data
from that column is lost.

LAST MAXIMUM
DATA CARD TIME START EDGE OF START COLUMN | ALLOWABLE
DGC TRANSFER | CYCLE BETWEEN TO EDGE | CARD TO TO FIRST TO END | PROGRAMMED
MODEL | CARD RATE TIME | CHARACTERS | OF CARD | FIRST COL. | COLUMN | OF CARD | I/O LATENCY
NUMBER | TYPE |{(CARDS/MIN) (ms) (ms) (ms) (A) (ms) (B) (ms) (A&B) (ms) (ms)
4016C Punch 150 400 2.01 53 6.25 59.3 170. 1.31
4016D Punch 285 200 2.0 24 6.25 30.2 8.05 1.31
4016E Punch 400 150 .87 24 2.6 26.6 53.5 .43
4016F Punch 600 100 .87 24 2.6 26.6 3.48 .43
4016G Punch 1000 60 .48 15 1.86 16.9 1.91 .24
4016H Mark 150 400 161. * 53 43.06%* Note 1 43.06%%* .60
Sense
40161 Mark 285 210 161, * 24 43.06** Note 1 43.06%** .60
Sense
4016J Mark 400 150 69. * 24 100.67** Note 1 100.67** .23
Sense
4016K Mark 600 100 69. * 24 100.67* Note 1 100.67** .23
Sense
4016L Mark 1000 60 40 * 15 175.38** Note 1 175, 38** .13
Sense

*Divide this number by the number of columns/card to obtain intercharacter times.
**Divide the distance, in inches, from the edge of the card to the second clock mark's leading edge by this factor to obtain the

time interval.

**xDjvide the distance, in inches, from the last column timing mark to the end of the card by this factor to obtain the time

interval.

Note 1 - Add the time calculated in column B to the time calculated in column A to obtain this time.

06 -01460

ERROR CONDITIONS

The card reader's Status register is used in deter-
mining when errors have been encountered during
operation. These errors may cause erroneous
data, or make it impossible to read data. Three
status flags: Hopper Empty/Stacker Full,
Trouble, and Pick Failure are available in the
Status Register to signal any malfunctions in the
reader. These flags will cause the reader motor
to shut off and require operator intervention for
correction, Two other flags: Ready, and Card-in-
Reader signal the state of the reader.

If Hopper Empty/Stacker Full is set to 1, the
reader will not attempt to pick another card when
a Start command is issued. The Hopper Empty/
Stacker Full flag indicates that either all the cards
were read (Hopper Empty) or the card stacker can
hold no more cards (Stacker Full). In order to
continue reading cards, the operator must either
load a new deck of cards, empty the card stacker,
or both,

The Trouble flag indicates several types of mal-
functions, such as a card jammed in the reader or
a failure in the reader's electronic sensors. The

Rev. 01

reader will continue to attempt to read the card
currently in the reader, but any data read from
that card is questionable.

The Pick Failure flag is set to 1 if a Start com-
mand fails to bring a card into the read station
from the hopper. Note that if a Pick Failure oc-
curs, the Done flag is never set to 1, and the
Busy flag remains set to 1. Therefore, the only
means of determining a bad pick is through the
Pick Failure flag. Even though a Pick Failure
may occur, the controller will continue trying

to pick the card until either a Clear command

or an I/O RESET instruction (IORST) is issued.

If continued attempts to read the card fail, in-
cluding manual reloading by the operator, the
card is probably defective and should be replaced.
The Ready flag is set to 1 if the reader is ready
to receive a Start command from the controller.
Ready will not be 1 if any other Status flags are 1.

The Card-in-Reader flag is set to 1 if there is a
card in the read station.

II-14

PROGRAMMING EXAMPLES

The card reader may be programmed in a manner
similar to the Teletype input if one does not wish
to check for errors in the reader. This is not
recommended, as a malfunction in the reader
may result in erroneous data. The following sub-
routine is one of many ways to read a card from

the card reader, checking for errors. It is called
by a JUMP TO SUBROUTINE instruction (JSR)

to RDCRD. When the JSR instruction is executed,
AC2 should contain the address where the data
will be stored sequentially. Upon return, AC2
will contain an address one greater than the final
address of the data storage. The other ACs re-
main unchanged. The subroutine is as follows:

; SUBROUTINE TO READ A CARI WITH COR TNTERRUPTE DISARLED
ROCRI: ST 0y SAUD FETORE ACCUMULATORS
574 2,5AU3
L 1A I READY 3LOAD READY MASK
IIR D/CUR FREAD STATUS
AN SR FREALIY?
JHF IR §ND
NTOE SR PPICK A CARD
LIA Z.FIKFL FLOAD FICK FATL HASK
CHECK: DI 9y DR STATUS
MOURE 0505870 IN READERT
JHF GO TO READ COLUMN LOOF
ANDE PRIOK FATLY
JHE INOs CHECK AGAIN
i PYES
LODF: BKPDN COR PREADY TO READ?
JiiF .1 INOT YET
SKFEN CDR FRUSY Y
JHF EOC PNOSFND OF CARD
nIAF 0sCLR FREAD DATA ANIU SET DONF T ©
STA 0,0+% FETORE DATA
INC 2 FINCREMENT FOTMTER
JHE LOOF PWALT FOR NEXT COLUMN
B0 s MIOC COR FCLEAR CDR
LDA 3y TRELE SLOAL TROURLE MASK
DIE 0 00K JREAD STATUS
AN 3.0y 57R FTROUELEY
JHF ERROR 3 YE
LDA 0rSAVO FRESTORE ACO
S BHAYE FRETURM
ERROFE HALT PNORMALLY SENI' MFSSAGE TO OFFRATOR
; STORAGE
Gavo: 0
SaVIT 0
REALV: 2
FIKFL: 10
TRELE: 4

But this program wastes time waiting for the card
to be picked, and then waits for each column to be
brought into the read station. The following pro-
gram uses the interrupt facility to accomplish the
same results with a minimum of wasted time.

It is called in the same manner as the first routine,
but does not return any data in the accumulators.

If time is a prime concern, the pick fail check may
be eliminated, releasing about 62 microseconds
for other programming. But if the pick check

is eliminated and a pick fail occurs, an interrupt
request will never be received from the card
reader.

Im-15

CARD READERS

INTRF:

-
y

ROCRD:

CHECK=®

LEAVE

CIORGR:

E0C:

EXIT:

ERROR:

SAVO:

SAV3:
READY
FIKFL:
TRELE :
FNTR?

CARDY READER SERVICEs USING INTERRUFTS

LLOGC 1

INTRF

DUMMY INTERRUFPT HANDLER

SKFIZ CUR SO INTERRUFT?

JMP CORSR FYESy GO TO COR SERVICE ROUTIME

HALT FNORMALLY WOULT CRECK FOR OTHER INTERRUFTS

SUBROUTINE TO READI & CARD - JSRPED TO RY MAIN FROGRAM

SKPRZ COR FREALER alLREADY RUSY?

JME 21 FYESs WaIT TILL IT'S FREF

STa 0, 8AVO SETORE ACCUMULATORS

8Ta 3y BAVS

aTa ZyFNTR SETORE FOINTER

LIta ILREADY FLOAD READY MASK

DIk Oy CIIR FREAD STATUS

ANDF 209 SNR SREADY?

JHE ERROR FNU

NIQOS COR FFICK A CARD

FICK FAILURE CHFUKs MAY RE OMITTED TF WAITING TIMF CAN'T RF
LI IyFPIRKFL SLOAD FICK FAIL MASK

DIk Qs CIIN FREAD STATUS

HOVR= 0y0,8ZC FCARD IN READER?T

JMF LEAVE FYESy CARD HAS REEM FICKED SUCCESSFULLY
ANI Q0 BNR FFICK FAIL?Y

JHF CHECK iNOy CHFCK AGARIN

JMF ERRQOR IYES

LIvA 0y 85AVO FRESTORE aCo

JMF #5AV3 FRETURN TO MAIN FROGRAM

COR INTERRUFT SERVICE ROUTINE ~ JMP?EDR TO RY MAIN INTERRUPT

STA Q0 5AV0 FETORE aCUUMULATORS

STa 3y5AV3

GNFEN CIiR s RUSY D

JMF gEQc FNOSEND OF CaARD

niar Oy CIIR SREAD DATA AND SFT DONE TO O
STA O+GFNTR FSTURE DNATA

182 FNTR FINCREMENT FOINTER

JME EXIT sGET QuT

NIOC ChR sCLEAR CDR

LA Iy TRELE sLOAD TROURLFE MASK

nIe O CIR FREAD STATUS

ANDE Is0s87K FTROURLE?

JMF ERROR SYES

L& 0y SAVO SRESTORE ACCUMULATORS

LI'A 2y 5AY3

INTEN FENARLE INTERRUFTS

JMF @0 SRETURN TO INTERRUFTED FROGRAM
HALT FMORMALLY WOULD SEND THE QFFRATOR A MESCSAGE
STORAGE

o]

0

2

10

4

0

SFARET

HANDIL ER

III1-16

LINE PRINTERS

INTRODUCTION

Line printers provide high speed, alphanumeric,
hard-copy output. Two major types of line printers
are available; one using character drum impact,
and the other using serial-dot matrix impact as the
means of printing. The printers can receive and
print one of the 64 or 96 character subsets of

ASCII code shown in Appendix C.

To operate more efficiently, each line printer
simultaneously prints a group of characters. In
order to accomplish this, the line is divided into
one or more ""zones'" for printing. As characters
are sent to the line printer, they are stored in an
area known as the '""Zone Buffer'. When the Zone
Buffer has been filled, or the proper control char-
acter has been given, the contents of the Zone
Buffer are printed in the present zone. In this
manner, fewer mechanical cycles are necessary
to print each line. When printing has been com-
pleted, the Zone Buffer is zeroed, and a " Zone

SUMMARY
MNEMONIC (FIRST CONTROLLER)...... LPT
DEVICE CODE (FIRST CONTROLLER)..... 17

MNEMONIC (SECOND CONTROLLER)... LPT1
DEVICE CODE (SECOND CONTROLLER)... 57

8
PRIORITY MASK BIT.......vurvnenennn.. 12
MAXIMUM CHARACTERS/LINE ... 80/132/136
LINES/INCH. ..\ tvtterenerenerenennnenes 6/8

ACCUMULATOR FORMATS

LLOAD CHARACTER BUFFER (DOA)
CHARACTER OR COMMAND]

9 10 Il 12 13 14 15

........................ (DIA)

ZONE # 1|

e i~

l‘—ZO—ﬂ
i CHARACTERS i

|

ZONE #2 ZONE #3 ZONE#4
P e

x
ko
z
=1

{
1 '

WHEN THE ZONE BUFFER IS

4§ FuLL, THE CONTENTS ARE
i SENT TO THE SELECTED ZONE.

q T
aiug';gn g I | @ |(SELECTS ZONE #£)
R\ J €

s

0000000000000 0000000C0C00D0O0
00000000000 00000000000000

ZON
an POINTER

‘FROM CONTROLLER
06-00970

o |1 2 3 4 5 6 7 8 9 10 Il 12 13 14 15

S, C AND P FUNCTIONS

S Set the Busy flag to 1, the Done flag to
0, and load the contents of the Character
Buffer into the printer's Zone Buffer.

C Set both the Busy and Done flags to 0
without affecting the contents of the
Character Buffer.

P No effect.

I-17

LINE PRINTERS

Pointer' is automatically set to point to the next
zone. The Zone Pointer determines the zone to be
printed next. If the zone printed was the last zone
on the line, or the proper control character had
been given, then the Zone Pointer returns to the
first zone on the line. The program may again
load the Zone Buffer for printing.

The printers are all programmed in a similar
manner and incorporate the following control char-
acters: carriage return, line feed, and form feed.
Paper widths may range from 4 to 19 7/8 inches,
depending upon the printer. The table below<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>